evaluate_reader.py 5.3 KB
Newer Older
T
tangwei 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
M
add gnn  
malin10 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tangwei 已提交
14

M
add gnn  
malin10 已提交
15 16
import copy
import random
T
tangwei 已提交
17 18 19

import numpy as np

20 21
from paddlerec.core.reader import Reader
from paddlerec.core.utils import envs
M
add gnn  
malin10 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137


class EvaluateReader(Reader):
    def init(self):
        self.batch_size = envs.get_global_env("batch_size", None, "evaluate.reader")
        
        self.input = []
        self.length = None

    def base_read(self, files):
        res = []
        for f in files:
	    with open(f, "r") as fin:
                for line in fin:
		    line = line.strip().split('\t')
		    res.append(tuple([map(int, line[0].split(',')), int(line[1])]))
        return res

    def make_data(self, cur_batch, batch_size):
        cur_batch = [list(e) for e in cur_batch]
        max_seq_len = 0
        for e in cur_batch:
            max_seq_len = max(max_seq_len, len(e[0]))
        last_id = []
        for e in cur_batch:
            last_id.append(len(e[0]) - 1)
            e[0] += [0] * (max_seq_len - len(e[0]))

        max_uniq_len = 0
        for e in cur_batch:
            max_uniq_len = max(max_uniq_len, len(np.unique(e[0])))

        items, adj_in, adj_out, seq_index, last_index = [], [], [], [], []
        mask, label = [], []

        id = 0
        for e in cur_batch:
            node = np.unique(e[0])
            items.append(node.tolist() + (max_uniq_len - len(node)) * [0])
            adj = np.zeros((max_uniq_len, max_uniq_len))

            for i in np.arange(len(e[0]) - 1):
                if e[0][i + 1] == 0:
                    break
                u = np.where(node == e[0][i])[0][0]
                v = np.where(node == e[0][i + 1])[0][0]
                adj[u][v] = 1

            u_deg_in = np.sum(adj, 0)
            u_deg_in[np.where(u_deg_in == 0)] = 1
            adj_in.append(np.divide(adj, u_deg_in).transpose())

            u_deg_out = np.sum(adj, 1)
            u_deg_out[np.where(u_deg_out == 0)] = 1
            adj_out.append(np.divide(adj.transpose(), u_deg_out).transpose())

            seq_index.append(
                [[id, np.where(node == i)[0][0]] for i in e[0]])
            last_index.append(
                [id, np.where(node == e[0][last_id[id]])[0][0]])
            label.append(e[1] - 1)
            mask.append([[1] * (last_id[id] + 1) + [0] *
                         (max_seq_len - last_id[id] - 1)])
            id += 1

        items = np.array(items).astype("int64").reshape((batch_size, -1))
        seq_index = np.array(seq_index).astype("int32").reshape(
            (batch_size, -1, 2))
        last_index = np.array(last_index).astype("int32").reshape(
            (batch_size, 2))
        adj_in = np.array(adj_in).astype("float32").reshape(
            (batch_size, max_uniq_len, max_uniq_len))
        adj_out = np.array(adj_out).astype("float32").reshape(
            (batch_size, max_uniq_len, max_uniq_len))
        mask = np.array(mask).astype("float32").reshape((batch_size, -1, 1))
        label = np.array(label).astype("int64").reshape((batch_size, 1))
        return zip(items, seq_index, last_index, adj_in, adj_out, mask, label)

    def batch_reader(self, batch_size, batch_group_size, train=True):
        def _reader():
            random.shuffle(self.input)
            group_remain = self.length % batch_group_size
            for bg_id in range(0, self.length - group_remain, batch_group_size):
                cur_bg = copy.deepcopy(self.input[bg_id:bg_id + batch_group_size])
                if train:
                    cur_bg = sorted(cur_bg, key=lambda x: len(x[0]), reverse=True)
                for i in range(0, batch_group_size, batch_size):
                    cur_batch = cur_bg[i:i + batch_size]
                    yield self.make_data(cur_batch, batch_size)

            if group_remain == 0:
                return
            remain_data = copy.deepcopy(self.input[-group_remain:])
            if train:
                remain_data = sorted(
                    remain_data, key=lambda x: len(x[0]), reverse=True)
            for i in range(0, group_remain, batch_size):
                if i + batch_size <= group_remain:
                    cur_batch = remain_data[i:i + batch_size]
                    yield self.make_data(cur_batch, batch_size)
                else:
                    # Due to fixed batch_size, discard the remaining ins
                    return
                    #cur_batch = remain_data[i:]
                    #yield self.make_data(cur_batch, group_remain % batch_size)
        return _reader
 
    def generate_batch_from_trainfiles(self, files):
        self.input = self.base_read(files)
        self.length = len(self.input)
        return self.batch_reader(self.batch_size, self.batch_size * 20, False)

    def generate_sample(self, line):
        def data_iter():
            yield []
        return data_iter