config.yaml 2.1 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# global settings 
debug: false
workspace: "paddlerec.models.rank.BST"

dataset:
- name: sample_1
  type: DataLoader
  batch_size: 5
  data_path: "{workspace}/data/train_data"
  sparse_slots: "label history cate position target target_cate target_position"
- name: infer_sample
  type: DataLoader
  batch_size: 5
  data_path: "{workspace}/data/train_data"
  sparse_slots: "label history cate position target target_cate target_position"

hyper_parameters:
    optimizer:
        class: SGD
        learning_rate: 0.0001
    use_DataLoader: True
    item_emb_size: 96
    cat_emb_size: 96
    position_emb_size: 96
    is_sparse: False
    item_count: 63001
    cat_count: 801
    position_count: 5001
    n_encoder_layers: 1
    d_model: 288
    d_key: 48
    d_value: 48
    n_head: 6
    dropout_rate: 0
    postprocess_cmd: "da"
    prepostprocess_dropout: 0
    d_inner_hid: 512
    relu_dropout: 0.0
    act: "relu"
    fc_sizes: [1024, 512, 256]


mode: train_runner

runner:
  - name: train_runner
    class: train
    epochs: 1
    device: cpu
    init_model_path: ""
    save_checkpoint_interval: 1
    save_inference_interval: 1
    save_checkpoint_path: "increment_BST"
    save_inference_path: "inference_BST"
    print_interval: 1
  - name: infer_runner
    class: infer
    device: cpu
    init_model_path: "increment_BST/0"
    print_interval: 1
    
phase:
- name: phase1
  model: "{workspace}/model.py"
  dataset_name: sample_1
  thread_num: 1
#- name: infer_phase
#  model: "{workspace}/model.py"
#  dataset_name: infer_sample
#  thread_num: 1