reader.py 6.4 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
import random

try:
    import cPickle as pickle
except ImportError:
    import pickle

import numpy as np

from paddlerec.core.reader import ReaderBase
from paddlerec.core.utils import envs


class Reader(ReaderBase):
    def init(self):
        self.train_data_path = envs.get_global_env(
            "dataset.sample_1.data_path", None)
        self.res = []
        self.max_len = 0
        self.neg_candidate_item = []
        self.neg_candidate_cat = []
        self.max_neg_item = 10000
        self.max_neg_cat = 1000

        data_file_list = os.listdir(self.train_data_path)
        for i in range(0, len(data_file_list)):
            train_data_file = os.path.join(self.train_data_path,
                                           data_file_list[i])
            with open(train_data_file, "r") as fin:
                for line in fin:
                    line = line.strip().split(';')
                    hist = line[0].split()
                    self.max_len = max(self.max_len, len(hist))
        fo = open("tmp.txt", "w")
        fo.write(str(self.max_len))
        fo.close()
        self.batch_size = envs.get_global_env("dataset.sample_1.batch_size",
Y
yaoxuefeng 已提交
54
                                              32, None)
Y
yaoxuefeng 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        self.group_size = self.batch_size * 20

    def _process_line(self, line):
        line = line.strip().split(';')
        hist = line[0].split()
        hist = [int(i) for i in hist]
        cate = line[1].split()
        cate = [int(i) for i in cate]
        return [hist, cate, [int(line[2])], [int(line[3])], [float(line[4])]]

    def generate_sample(self, line):
        """
        Read the data line by line and process it as a dictionary
        """

        def data_iter():
            # feat_idx, feat_value, label = self._process_line(line)
            yield self._process_line(line)

        return data_iter

    def pad_batch_data(self, input, max_len):
        res = np.array([x + [0] * (max_len - len(x)) for x in input])
        res = res.astype("int64").reshape([-1, max_len])
        return res

    def make_data(self, b):
        max_len = max(len(x[0]) for x in b)
        # item = self.pad_batch_data([x[0] for x in b], max_len)
        # cat = self.pad_batch_data([x[1] for x in b], max_len)
        item = [x[0] for x in b]
        cat = [x[1] for x in b]
        neg_item = [None] * len(item)
        neg_cat = [None] * len(cat)

        for i in range(len(b)):
            neg_item[i] = []
            neg_cat[i] = []
Q
Qdriving 已提交
93
            # Neg item and neg cat should be paried
Y
yaoxuefeng 已提交
94 95
            if len(self.neg_candidate_item) < self.max_neg_item:
                self.neg_candidate_item.extend(b[i][0])
Q
Qdriving 已提交
96
                self.neg_candidate_cat.extend(b[i][1])
Y
yaoxuefeng 已提交
97
                if len(self.neg_candidate_item) > self.max_neg_item:
Q
Qdriving 已提交
98 99 100 101
                    self.neg_candidate_item = self.neg_candidate_item[
                        0:self.max_neg_item]
                    self.neg_candidate_cat = self.neg_candidate_cat[
                        0:self.max_neg_item]
Y
yaoxuefeng 已提交
102 103 104
            else:
                len_seq = len(b[i][0])
                start_idx = random.randint(0, self.max_neg_item - len_seq - 1)
Q
Qdriving 已提交
105 106 107 108
                self.neg_candidate_item[start_idx:start_idx + len_seq +
                                        1] = b[i][0]
                self.neg_candidate_cat[start_idx:start_idx + len_seq +
                                       1] = b[i][1]
Y
yaoxuefeng 已提交
109

Q
Qdriving 已提交
110
            for _ in range(len(b[i][0])):
Q
Qdriving 已提交
111 112 113
                randindex = random.randint(0, len(self.neg_candidate_item) - 1)
                neg_item[i].append(self.neg_candidate_item[randindex])
                neg_cat[i].append(self.neg_candidate_cat[randindex])
Y
yaoxuefeng 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

        len_array = [len(x[0]) for x in b]
        mask = np.array(
            [[0] * x + [-1e9] * (max_len - x) for x in len_array]).reshape(
                [-1, max_len, 1])
        target_item_seq = np.array(
            [[x[2]] * max_len for x in b]).astype("int64").reshape(
                [-1, max_len])
        target_cat_seq = np.array(
            [[x[3]] * max_len for x in b]).astype("int64").reshape(
                [-1, max_len])
        res = []
        for i in range(len(b)):
            res.append([
                item[i], cat[i], b[i][2], b[i][3], b[i][4], mask[i],
                target_item_seq[i], target_cat_seq[i], neg_item[i], neg_cat[i]
            ])
        return res

    def batch_reader(self, reader, batch_size, group_size):
        def batch_reader():
            bg = []
            for line in reader:
                bg.append(line)
                if len(bg) == group_size:
                    sortb = sorted(bg, key=lambda x: len(x[0]), reverse=False)
                    bg = []
                    for i in range(0, group_size, batch_size):
                        b = sortb[i:i + batch_size]
                        yield self.make_data(b)
            len_bg = len(bg)
            if len_bg != 0:
                sortb = sorted(bg, key=lambda x: len(x[0]), reverse=False)
                bg = []
                remain = len_bg % batch_size
                for i in range(0, len_bg - remain, batch_size):
                    b = sortb[i:i + batch_size]
                    yield self.make_data(b)

        return batch_reader

    def base_read(self, file_dir):
        res = []
        for train_file in file_dir:
            with open(train_file, "r") as fin:
                for line in fin:
                    line = line.strip().split(';')
                    hist = line[0].split()
                    cate = line[1].split()
                    res.append([hist, cate, line[2], line[3], float(line[4])])
        return res

    def generate_batch_from_trainfiles(self, files):
        data_set = self.base_read(files)
        random.shuffle(data_set)
        return self.batch_reader(data_set, self.batch_size,
                                 self.batch_size * 20)