reader.py 2.6 KB
Newer Older
T
tangwei 已提交
1

T
tangwei 已提交
2
from ...utils import envs
T
tangwei 已提交
3

T
tangwei 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
# There are 13 integer features and 26 categorical features
continous_features = range(1, 14)
categorial_features = range(14, 40)
continous_clip = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]


class CriteoDataset(object):
    def __init__(self, sparse_feature_dim):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [
            20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
        ]
        self.cont_diff_ = [
            20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
        ]
        self.hash_dim_ = sparse_feature_dim
        # here, training data are lines with line_index < train_idx_
        self.train_idx_ = 41256555
        self.continuous_range_ = range(1, 14)
        self.categorical_range_ = range(14, 40)

    def _reader_creator(self, file_list, is_train, trainer_num, trainer_id):
        def reader():
            for file in file_list:
                with open(file, 'r') as f:
                    line_idx = 0
                    for line in f:
                        line_idx += 1
                        features = line.rstrip('\n').split('\t')
                        dense_feature = []
                        sparse_feature = []
                        for idx in self.continuous_range_:
                            if features[idx] == '':
                                dense_feature.append(0.0)
                            else:
                                dense_feature.append(
                                    (float(features[idx]) -
                                     self.cont_min_[idx - 1]) /
                                    self.cont_diff_[idx - 1])
                        for idx in self.categorical_range_:
                            sparse_feature.append([
                                hash(str(idx) + features[idx]) % self.hash_dim_
                            ])

                        label = [int(features[0])]
                        yield [dense_feature] + sparse_feature + [label]

        return reader

    def train(self, file_list, trainer_num, trainer_id):
        return self._reader_creator(file_list, True, trainer_num, trainer_id)

    def test(self, file_list):
        return self._reader_creator(file_list, False, 1, 0)


def Train():
    sparse_feature_number = envs.get_global_env("sparse_feature_number")
    train_generator = CriteoDataset(sparse_feature_number)
    return train_generator.train


def Evaluate():
    sparse_feature_number = envs.get_global_env("sparse_feature_number")
    train_generator = CriteoDataset(sparse_feature_number)
    return train_generator.test
T
tangwei 已提交
70