online_learning_trainer.py 7.1 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function

import os
import time
import datetime

import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
from paddle.fluid.incubate.fleet.base.role_maker import PaddleCloudRoleMaker

from paddlerec.core.utils import envs
from paddlerec.core.trainers.transpiler_trainer import TranspileTrainer


class ClusterTrainer(TranspileTrainer):
    def processor_register(self):
        role = PaddleCloudRoleMaker()
        fleet.init(role)

        if fleet.is_server():
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('server_pass', self.server)
        else:
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('startup_pass', self.startup)
            if envs.get_platform() == "LINUX" and envs.get_global_env("dataset_class", None, "train.reader") != "DataLoader":
                self.regist_context_processor('train_pass', self.dataset_train)
            else:
                self.regist_context_processor(
                    'train_pass', self.dataloader_train)
            self.regist_context_processor('infer_pass', self.infer)
            self.regist_context_processor('terminal_pass', self.terminal)

    def build_strategy(self):
        mode = envs.get_runtime_environ("train.trainer.strategy")
        assert mode in ["async", "geo", "sync", "half_async"]

        strategy = None

        if mode == "async":
            strategy = StrategyFactory.create_async_strategy()
        elif mode == "geo":
            push_num = envs.get_global_env("train.strategy.mode.push_num", 100)
            strategy = StrategyFactory.create_geo_strategy(push_num)
        elif mode == "sync":
            strategy = StrategyFactory.create_sync_strategy()
        elif mode == "half_async":
            strategy = StrategyFactory.create_half_async_strategy()

        assert strategy is not None

        self.strategy = strategy
        return strategy

    def init(self, context):
        self.model.train_net()
        optimizer = self.model.optimizer()
        strategy = self.build_strategy()
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(self.model.get_cost_op())

        if fleet.is_server():
            context['status'] = 'server_pass'
        else:
            self.fetch_vars = []
            self.fetch_alias = []
            self.fetch_period = self.model.get_fetch_period()

            metrics = self.model.get_metrics()
            if metrics:
                self.fetch_vars = metrics.values()
                self.fetch_alias = metrics.keys()
            context['status'] = 'startup_pass'

    def server(self, context):
        fleet.init_server()
        fleet.run_server()
        context['is_exit'] = True

    def startup(self, context):
        self._exe.run(fleet.startup_program)
        context['status'] = 'train_pass'

    def dataloader_train(self, context):
        print("online learning can only support LINUX only")
        context['status'] = 'terminal_pass'

    def _get_dataset(self, state="TRAIN", hour=None):
        if state == "TRAIN":
            inputs = self.model.get_inputs()
            namespace = "train.reader"
            train_data_path = envs.get_global_env(
                "train_data_path", None, namespace)
        else:
            inputs = self.model.get_infer_inputs()
            namespace = "evaluate.reader"
            train_data_path = envs.get_global_env(
                "test_data_path", None, namespace)

        threads = int(envs.get_runtime_environ("train.trainer.threads"))
        batch_size = envs.get_global_env("batch_size", None, namespace)
        reader_class = envs.get_global_env("class", None, namespace)
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py')
        pipe_cmd = "python {} {} {} {}".format(
            reader, reader_class, state, self._config_yaml)

        if train_data_path.startswith("paddlerec::"):
            package_base = envs.get_runtime_environ("PACKAGE_BASE")
            assert package_base is not None
            train_data_path = os.path.join(
                package_base, train_data_path.split("::")[1])

        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_use_var(inputs)
        dataset.set_pipe_command(pipe_cmd)
        dataset.set_batch_size(batch_size)
        dataset.set_thread(threads)

        if hour is not None:
            train_data_path = os.path.join(train_data_path, hour)

        file_list = [
            os.path.join(train_data_path, x)
            for x in os.listdir(train_data_path)
        ]

        self.files = file_list
        dataset.set_filelist(self.files)
        return dataset

    def dataset_train(self, context):
        fleet.init_worker()

        days = envs.get_global_env("train.days")
        begin_day = datetime.datetime.strptime("begin_day_d", '%Y%m%d')

        for day in range(days):
            for hour in range(24):
                day = begin_day + datetime.timedelta(days=day, hours=hour)
                day_s = day.strftime('%Y%m%d/%H')
                i = day.strftime('%Y%m%d_%H')

                dataset = self._get_dataset(hour=day_s)
                ins = self._get_dataset_ins()

                begin_time = time.time()
                self._exe.train_from_dataset(program=fluid.default_main_program(),
                                             dataset=dataset,
                                             fetch_list=self.fetch_vars,
                                             fetch_info=self.fetch_alias,
                                             print_period=self.fetch_period)
                end_time = time.time()
                times = end_time-begin_time
                print("epoch {} using time {}, speed {:.2f} lines/s".format(i, times, ins/times))
                self.save(i, "train", is_fleet=True)

        fleet.stop_worker()
        context['status'] = 'infer_pass'

    def terminal(self, context):
        for model in self.increment_models:
            print("epoch :{}, dir: {}".format(model[0], model[1]))
        context['is_exit'] = True