w2v_reader.py 3.6 KB
Newer Older
T
tangwei 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
M
add w2v  
malin10 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tangwei 已提交
14

M
add w2v  
malin10 已提交
15
import io
T
tangwei 已提交
16 17 18

import numpy as np

19 20
from paddlerec.core.reader import Reader
from paddlerec.core.utils import envs
M
add w2v  
malin10 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


class NumpyRandomInt(object):
    def __init__(self, a, b, buf_size=1000):
        self.idx = 0
        self.buffer = np.random.random_integers(a, b, buf_size)
        self.a = a
        self.b = b

    def __call__(self):
        if self.idx == len(self.buffer):
            self.buffer = np.random.random_integers(self.a, self.b,
                                                    len(self.buffer))
            self.idx = 0

        result = self.buffer[self.idx]
        self.idx += 1
        return result


class TrainReader(Reader):
    def init(self):
        dict_path = envs.get_global_env("word_count_dict_path", None, "train.reader") 
        self.window_size = envs.get_global_env("hyper_parameters.window_size", None, "train.model")
        self.neg_num = envs.get_global_env("hyper_parameters.neg_num", None, "train.model")
        self.with_shuffle_batch = envs.get_global_env("hyper_parameters.with_shuffle_batch", None, "train.model")
        self.random_generator = NumpyRandomInt(1, self.window_size + 1)

        self.cs = None
        if not self.with_shuffle_batch:
            id_counts = []
            word_all_count = 0
            with io.open(dict_path, 'r', encoding='utf-8') as f:
                for line in f:
                    word, count = line.split()[0], int(line.split()[1])
                    id_counts.append(count)
                    word_all_count += count
            id_frequencys = [
                float(count) / word_all_count for count in id_counts
            ]
            np_power = np.power(np.array(id_frequencys), 0.75)
            id_frequencys_pow = np_power / np_power.sum()
            self.cs = np.array(id_frequencys_pow).cumsum()

    def get_context_words(self, words, idx):
        """
        Get the context word list of target word.
        words: the words of the current line
        idx: input word index
        window_size: window size
        """
        target_window = self.random_generator()
        start_point = idx - target_window  # if (idx - target_window) > 0 else 0
        if start_point < 0:
            start_point = 0
        end_point = idx + target_window
        targets = words[start_point:idx] + words[idx + 1:end_point + 1]
        return targets 

    def generate_sample(self, line):
        def reader():
            word_ids = [w for w in line.split()]
            for idx, target_id in enumerate(word_ids):
                context_word_ids = self.get_context_words(
                    word_ids, idx)
                for context_id in context_word_ids:
                    output = [('input_word', [int(target_id)]), ('true_label', [int(context_id)])]
                    if not self.with_shuffle_batch:
                        neg_array = self.cs.searchsorted(np.random.sample(self.neg_num))
                        output += [('neg_label', [int(str(i)) for i in neg_array ])]
                    yield output
        return reader