model.py 21.1 KB
Newer Older
C
chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# -*- coding=utf-8 -*-
"""
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
C
Chengmo 已提交
17
import paddle
C
chengmo 已提交
18 19
import paddle.fluid as fluid

20
from paddlerec.core.utils import envs
C
Chengmo 已提交
21
from paddlerec.core.model import ModelBase
C
chengmo 已提交
22 23 24 25 26


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)
C
Chengmo 已提交
27 28

    def _init_hyper_parameters(self):
C
chengmo 已提交
29
        # tree meta hyper parameters
C
Chengmo 已提交
30 31
        self.max_layers = envs.get_global_env("hyper_parameters.max_layers", 4)
        self.node_nums = envs.get_global_env("hyper_parameters.node_nums", 26)
C
chengmo 已提交
32
        self.leaf_node_nums = envs.get_global_env(
C
Chengmo 已提交
33
            "hyper_parameters.leaf_node_nums", 13)
C
chengmo 已提交
34
        self.output_positive = envs.get_global_env(
C
Chengmo 已提交
35
            "hyper_parameters.output_positive", True)
C
chengmo 已提交
36
        self.layer_node_num_list = envs.get_global_env(
C
Chengmo 已提交
37 38 39 40
            "hyper_parameters.layer_node_num_list", [2, 4, 7, 12])
        self.child_nums = envs.get_global_env("hyper_parameters.child_nums", 2)
        self.tree_layer_path = envs.get_global_env(
            "hyper_parameters.tree.tree_layer_path", None)
C
chengmo 已提交
41 42 43

        # model training hyper parameter
        self.node_emb_size = envs.get_global_env(
C
Chengmo 已提交
44
            "hyper_parameters.node_emb_size", 64)
C
chengmo 已提交
45
        self.input_emb_size = envs.get_global_env(
C
Chengmo 已提交
46 47
            "hyper_parameters.input_emb_size", 768)
        self.act = envs.get_global_env("hyper_parameters.act", "tanh")
C
chengmo 已提交
48
        self.neg_sampling_list = envs.get_global_env(
C
Chengmo 已提交
49
            "hyper_parameters.neg_sampling_list", [1, 2, 3, 4])
C
chengmo 已提交
50 51

        # model infer hyper parameter
C
Chengmo 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65
        self.topK = envs.get_global_env(
            "hyper_parameters.topK",
            1, )
        self.batch_size = envs.get_global_env(
            "dataset.dataset_infer.batch_size", 1)

    def net(self, input, is_infer=False):
        if not is_infer:
            return self.train_net(input)
        else:
            return self.infer_net(input)

    def train_net(self, input):
        self.tdm_net(input)
C
chengmo 已提交
66
        self.create_info()
C
chengmo 已提交
67 68 69
        self.avg_loss()
        self.metrics()

C
Chengmo 已提交
70
    def infer_net(self, input):
C
chengmo 已提交
71
        self.create_first_layer()
C
Chengmo 已提交
72 73 74 75 76 77 78
        self.tdm_infer_net(input)

    def input_data(self, is_infer=False, **kwargs):
        if not is_infer:
            return self.train_input()
        else:
            return self.infer_input()
C
chengmo 已提交
79 80 81 82 83 84 85

    """ -------- Train network detail ------- """

    def train_input(self):
        input_emb = fluid.data(
            name="input_emb",
            shape=[None, self.input_emb_size],
T
tangwei 已提交
86
            dtype="float32", )
C
chengmo 已提交
87 88 89 90

        item_label = fluid.data(
            name="item_label",
            shape=[None, 1],
T
tangwei 已提交
91
            dtype="int64", )
C
chengmo 已提交
92

C
Chengmo 已提交
93
        return [input_emb, item_label]
C
chengmo 已提交
94

C
Chengmo 已提交
95
    def tdm_net(self, input):
C
chengmo 已提交
96 97 98 99 100
        """
        tdm训练网络的主要流程部分
        """
        is_distributed = True if envs.get_trainer() == "CtrTrainer" else False

C
Chengmo 已提交
101 102
        input_emb = input[0]
        item_label = input[1]
C
chengmo 已提交
103 104 105 106 107

        # 根据输入的item的正样本在给定的树上进行负采样
        # sample_nodes 是采样的node_id的结果,包含正负样本
        # sample_label 是采样的node_id对应的正负标签
        # sample_mask 是为了保持tensor维度一致,padding部分的标签,若为0,则是padding的虚拟node_id
C
Chengmo 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

        if self.check_version():
            with fluid.device_guard("cpu"):
                sample_nodes, sample_label, sample_mask = fluid.contrib.layers.tdm_sampler(
                    x=item_label,
                    neg_samples_num_list=self.neg_sampling_list,
                    layer_node_num_list=self.layer_node_num_list,
                    leaf_node_num=self.leaf_node_nums,
                    tree_travel_attr=fluid.ParamAttr(name="TDM_Tree_Travel"),
                    tree_layer_attr=fluid.ParamAttr(name="TDM_Tree_Layer"),
                    output_positive=self.output_positive,
                    output_list=True,
                    seed=0,
                    tree_dtype='int64',
                    dtype='int64')
        else:
            sample_nodes, sample_label, sample_mask = fluid.contrib.layers.tdm_sampler(
                x=item_label,
                neg_samples_num_list=self.neg_sampling_list,
                layer_node_num_list=self.layer_node_num_list,
                leaf_node_num=self.leaf_node_nums,
                tree_travel_attr=fluid.ParamAttr(name="TDM_Tree_Travel"),
                tree_layer_attr=fluid.ParamAttr(name="TDM_Tree_Layer"),
                output_positive=self.output_positive,
                output_list=True,
                seed=0,
                tree_dtype='int64',
                dtype='int64')
C
chengmo 已提交
136 137 138 139 140 141 142

        # 查表得到每个节点的Embedding
        sample_nodes_emb = [
            fluid.embedding(
                input=sample_nodes[i],
                is_sparse=True,
                size=[self.node_nums, self.node_emb_size],
T
tangwei 已提交
143 144
                param_attr=fluid.ParamAttr(name="TDM_Tree_Emb"))
            for i in range(self.max_layers)
C
chengmo 已提交
145 146 147 148
        ]

        # 此处进行Reshape是为了之后层次化的分类器训练
        sample_nodes_emb = [
T
tangwei 已提交
149 150 151 152
            fluid.layers.reshape(sample_nodes_emb[i], [
                -1, self.neg_sampling_list[i] + self.output_positive,
                self.node_emb_size
            ]) for i in range(self.max_layers)
C
chengmo 已提交
153 154 155 156 157 158
        ]

        # 对输入的input_emb进行转换,使其维度与node_emb维度一致
        input_trans_emb = self.input_trans_layer(input_emb)

        # 分类器的主体网络,分别训练不同层次的分类器
T
tangwei 已提交
159 160
        layer_classifier_res = self.classifier_layer(input_trans_emb,
                                                     sample_nodes_emb)
C
chengmo 已提交
161 162 163

        # 最后的概率判别FC,将所有层次的node分类结果放到一起以相同的标准进行判别
        # 考虑到树极大可能不平衡,有些item不在最后一层,所以需要这样的机制保证每个item都有机会被召回
T
tangwei 已提交
164 165 166 167 168 169 170
        tdm_fc = fluid.layers.fc(
            input=layer_classifier_res,
            size=2,
            act=None,
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(name="tdm.cls_fc.weight"),
            bias_attr=fluid.ParamAttr(name="tdm.cls_fc.bias"))
C
chengmo 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

        # 将loss打平,放到一起计算整体网络的loss
        tdm_fc_re = fluid.layers.reshape(tdm_fc, [-1, 2])

        # 若想对各个层次的loss辅以不同的权重,则在此处无需concat
        # 支持各个层次分别计算loss,再乘相应的权重
        sample_label = fluid.layers.concat(sample_label, axis=1)
        labels_reshape = fluid.layers.reshape(sample_label, [-1, 1])
        labels_reshape.stop_gradient = True

        # 计算整体的loss并得到softmax的输出
        cost, softmax_prob = fluid.layers.softmax_with_cross_entropy(
            logits=tdm_fc_re, label=labels_reshape, return_softmax=True)

        # 通过mask过滤掉虚拟节点的loss
        sample_mask = fluid.layers.concat(sample_mask, axis=1)
        mask_reshape = fluid.layers.reshape(sample_mask, [-1, 1])
        mask_index = fluid.layers.where(mask_reshape != 0)
        mask_index.stop_gradient = True

        self.mask_cost = fluid.layers.gather_nd(cost, mask_index)
C
chengmo 已提交
192 193

        softmax_prob = fluid.layers.unsqueeze(input=softmax_prob, axes=[1])
C
chengmo 已提交
194 195 196 197 198
        self.mask_prob = fluid.layers.gather_nd(softmax_prob, mask_index)
        self.mask_label = fluid.layers.gather_nd(labels_reshape, mask_index)

        self._predict = self.mask_prob

C
chengmo 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211
    def create_info(self):
        fluid.default_startup_program().global_block().create_var(
            name="TDM_Tree_Info",
            dtype=fluid.core.VarDesc.VarType.INT32,
            shape=[self.node_nums, 3 + self.child_nums],
            persistable=True,
            initializer=fluid.initializer.ConstantInitializer(0))
        fluid.default_main_program().global_block().create_var(
            name="TDM_Tree_Info",
            dtype=fluid.core.VarDesc.VarType.INT32,
            shape=[self.node_nums, 3 + self.child_nums],
            persistable=True)

C
chengmo 已提交
212 213 214 215 216 217 218
    def avg_loss(self):
        avg_cost = fluid.layers.reduce_mean(self.mask_cost)
        self._cost = avg_cost

    def metrics(self):
        auc, batch_auc, _ = fluid.layers.auc(input=self._predict,
                                             label=self.mask_label,
T
tangwei 已提交
219
                                             num_thresholds=2**12,
C
chengmo 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
                                             slide_steps=20)
        self._metrics["AUC"] = auc
        self._metrics["BATCH_AUC"] = batch_auc
        self._metrics["BATCH_LOSS"] = self._cost

    def input_trans_layer(self, input_emb):
        """
        输入侧训练组网
        """
        # 将input映射到与node相同的维度
        input_fc_out = fluid.layers.fc(
            input=input_emb,
            size=self.node_emb_size,
            act=None,
            param_attr=fluid.ParamAttr(name="trans.input_fc.weight"),
T
tangwei 已提交
235
            bias_attr=fluid.ParamAttr(name="trans.input_fc.bias"), )
C
chengmo 已提交
236 237 238 239 240 241 242 243 244

        # 将input_emb映射到各个不同层次的向量表示空间
        input_layer_fc_out = [
            fluid.layers.fc(
                input=input_fc_out,
                size=self.node_emb_size,
                act=self.act,
                param_attr=fluid.ParamAttr(
                    name="trans.layer_fc.weight." + str(i)),
T
tangwei 已提交
245 246 247
                bias_attr=fluid.ParamAttr(
                    name="trans.layer_fc.bias." + str(i)), )
            for i in range(self.max_layers)
C
chengmo 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        ]

        return input_layer_fc_out

    def _expand_layer(self, input_layer, node, layer_idx):
        # 扩展input的输入,使数量与node一致,
        # 也可以以其他broadcast的操作进行代替
        # 同时兼容了训练组网与预测组网
        input_layer_unsequeeze = fluid.layers.unsqueeze(
            input=input_layer, axes=[1])
        if not isinstance(node, list):
            input_layer_expand = fluid.layers.expand(
                input_layer_unsequeeze, expand_times=[1, node.shape[1], 1])
        else:
            input_layer_expand = fluid.layers.expand(
T
tangwei 已提交
263 264
                input_layer_unsequeeze,
                expand_times=[1, node[layer_idx].shape[1], 1])
C
chengmo 已提交
265 266 267 268 269
        return input_layer_expand

    def classifier_layer(self, input, node):
        # 扩展input,使维度与node匹配
        input_expand = [
T
tangwei 已提交
270 271
            self._expand_layer(input[i], node, i)
            for i in range(self.max_layers)
C
chengmo 已提交
272 273 274 275 276
        ]

        # 将input_emb与node_emb concat到一起过分类器FC
        input_node_concat = [
            fluid.layers.concat(
T
tangwei 已提交
277 278
                input=[input_expand[i], node[i]], axis=2)
            for i in range(self.max_layers)
C
chengmo 已提交
279 280 281 282 283 284 285 286
        ]
        hidden_states_fc = [
            fluid.layers.fc(
                input=input_node_concat[i],
                size=self.node_emb_size,
                num_flatten_dims=2,
                act=self.act,
                param_attr=fluid.ParamAttr(
T
for mat  
tangwei 已提交
287
                    name="cls.concat_fc.weight." + str(i)),
T
tangwei 已提交
288 289
                bias_attr=fluid.ParamAttr(name="cls.concat_fc.bias." + str(i)))
            for i in range(self.max_layers)
C
chengmo 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303
        ]

        # 如果将所有层次的node放到一起计算loss,则需要在此处concat
        # 将分类器结果以batch为准绳concat到一起,而不是layer
        # 维度形如[batch_size, total_node_num, node_emb_size]
        hidden_states_concat = fluid.layers.concat(hidden_states_fc, axis=1)
        return hidden_states_concat

    """ -------- Infer network detail ------- """

    def infer_input(self):
        input_emb = fluid.layers.data(
            name="input_emb",
            shape=[self.input_emb_size],
T
tangwei 已提交
304
            dtype="float32", )
C
chengmo 已提交
305

C
Chengmo 已提交
306
        return [input_emb]
C
chengmo 已提交
307 308 309 310

    def get_layer_list(self):
        """get layer list from layer_list.txt"""
        layer_list = []
C
chengmo 已提交
311
        with open(self.tree_layer_path, 'r') as fin:
C
chengmo 已提交
312 313 314 315 316 317 318
            for line in fin.readlines():
                l = []
                layer = (line.split('\n'))[0].split(',')
                for node in layer:
                    if node:
                        l.append(node)
                layer_list.append(l)
C
chengmo 已提交
319
        self.layer_list = layer_list
C
chengmo 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332

    def create_first_layer(self):
        """decide which layer to start infer"""
        self.get_layer_list()
        first_layer_id = 0
        for idx, layer_node in enumerate(self.layer_node_num_list):
            if layer_node >= self.topK:
                first_layer_id = idx
                break
        first_layer_node = self.layer_list[first_layer_id]
        self.first_layer_idx = first_layer_id
        node_list = []
        mask_list = []
C
chengmo 已提交
333
        for id in first_layer_node:
T
tangwei 已提交
334 335 336 337 338 339
            node_list.append(
                fluid.layers.fill_constant(
                    [self.batch_size, 1], value=int(id), dtype='int64'))
            mask_list.append(
                fluid.layers.fill_constant(
                    [self.batch_size, 1], value=0, dtype='int64'))
C
chengmo 已提交
340 341 342
        self.first_layer_node = fluid.layers.concat(node_list, axis=1)
        self.first_layer_node_mask = fluid.layers.concat(mask_list, axis=1)

C
Chengmo 已提交
343
    def tdm_infer_net(self, input):
C
chengmo 已提交
344 345 346 347 348 349 350 351
        """
        infer的主要流程
        infer的基本逻辑是:从上层开始(具体层idx由树结构及TopK值决定)
        1、依次通过每一层分类器,得到当前层输入的指定节点的prob
        2、根据prob值大小,取topK的节点,取这些节点的孩子节点作为下一层的输入
        3、循环1、2步骤,遍历完所有层,得到每一层筛选结果的集合
        4、将筛选结果集合中的叶子节点,拿出来再做一次topK,得到最终的召回输出
        """
C
Chengmo 已提交
352
        input_emb = input[0]
C
chengmo 已提交
353 354 355 356 357
        node_score = []
        node_list = []

        current_layer_node = self.first_layer_node
        current_layer_node_mask = self.first_layer_node_mask
C
chengmo 已提交
358
        input_trans_emb = self.input_fc_infer(input_emb)
C
chengmo 已提交
359 360 361 362 363 364 365

        for layer_idx in range(self.first_layer_idx, self.max_layers):
            # 确定当前层的需要计算的节点数
            if layer_idx == self.first_layer_idx:
                current_layer_node_num = self.first_layer_node.shape[1]
            else:
                current_layer_node_num = current_layer_node.shape[1] * \
C
Chengmo 已提交
366
                    current_layer_node.shape[2]
C
chengmo 已提交
367 368 369 370 371 372 373

            current_layer_node = fluid.layers.reshape(
                current_layer_node, [-1, current_layer_node_num])
            current_layer_node_mask = fluid.layers.reshape(
                current_layer_node_mask, [-1, current_layer_node_num])
            node_emb = fluid.embedding(
                input=current_layer_node,
C
chengmo 已提交
374
                size=[self.node_nums, self.node_emb_size],
C
chengmo 已提交
375 376
                param_attr=fluid.ParamAttr(name="TDM_Tree_Emb"))

T
tangwei 已提交
377
            input_fc_out = self.layer_fc_infer(input_trans_emb, layer_idx)
C
chengmo 已提交
378 379

            # 过每一层的分类器
T
tangwei 已提交
380 381
            layer_classifier_res = self.classifier_layer_infer(
                input_fc_out, node_emb, layer_idx)
C
chengmo 已提交
382 383

            # 过最终的判别分类器
T
tangwei 已提交
384 385 386 387 388 389 390
            tdm_fc = fluid.layers.fc(
                input=layer_classifier_res,
                size=2,
                act=None,
                num_flatten_dims=2,
                param_attr=fluid.ParamAttr(name="tdm.cls_fc.weight"),
                bias_attr=fluid.ParamAttr(name="tdm.cls_fc.bias"))
C
chengmo 已提交
391 392 393 394

            prob = fluid.layers.softmax(tdm_fc)
            positive_prob = fluid.layers.slice(
                prob, axes=[2], starts=[1], ends=[2])
T
tangwei 已提交
395 396
            prob_re = fluid.layers.reshape(positive_prob,
                                           [-1, current_layer_node_num])
C
chengmo 已提交
397 398 399

            # 过滤掉padding产生的无效节点(node_id=0)
            node_zero_mask = fluid.layers.cast(current_layer_node, 'bool')
C
Chengmo 已提交
400
            node_zero_mask = fluid.layers.cast(node_zero_mask, 'float32')
C
chengmo 已提交
401 402 403 404 405 406 407 408 409 410
            prob_re = prob_re * node_zero_mask

            # 在当前层的分类结果中取topK,并将对应的score及node_id保存下来
            k = self.topK
            if current_layer_node_num < self.topK:
                k = current_layer_node_num
            _, topk_i = fluid.layers.topk(prob_re, k)

            # index_sample op根据下标索引tensor对应位置的值
            # 若paddle版本>2.0,调用方式为paddle.index_sample
T
tangwei 已提交
411 412
            top_node = fluid.contrib.layers.index_sample(current_layer_node,
                                                         topk_i)
C
chengmo 已提交
413
            prob_re_mask = prob_re * current_layer_node_mask  # 过滤掉非叶子节点
T
tangwei 已提交
414 415
            topk_value = fluid.contrib.layers.index_sample(prob_re_mask,
                                                           topk_i)
C
chengmo 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
            node_score.append(topk_value)
            node_list.append(top_node)

            # 取当前层topK结果的孩子节点,作为下一层的输入
            if layer_idx < self.max_layers - 1:
                # tdm_child op 根据输入返回其 child 及 child_mask
                # 若child是叶子节点,则child_mask=1,否则为0
                current_layer_node, current_layer_node_mask = \
                    fluid.contrib.layers.tdm_child(x=top_node,
                                                   node_nums=self.node_nums,
                                                   child_nums=self.child_nums,
                                                   param_attr=fluid.ParamAttr(
                                                       name="TDM_Tree_Info"),
                                                   dtype='int64')

        total_node_score = fluid.layers.concat(node_score, axis=1)
        total_node = fluid.layers.concat(node_list, axis=1)

        # 考虑到树可能是不平衡的,计算所有层的叶子节点的topK
        res_score, res_i = fluid.layers.topk(total_node_score, self.topK)
        res_layer_node = fluid.contrib.layers.index_sample(total_node, res_i)
        res_node = fluid.layers.reshape(res_layer_node, [-1, self.topK, 1])

        # 利用Tree_info信息,将node_id转换为item_id
T
tangwei 已提交
440 441
        tree_info = fluid.default_main_program().global_block().var(
            "TDM_Tree_Info")
C
chengmo 已提交
442 443 444 445 446
        res_node_emb = fluid.layers.gather_nd(tree_info, res_node)

        res_item = fluid.layers.slice(
            res_node_emb, axes=[2], starts=[0], ends=[1])
        self.res_item_re = fluid.layers.reshape(res_item, [-1, self.topK])
C
chengmo 已提交
447
        self._infer_results["item"] = self.res_item_re
C
chengmo 已提交
448 449 450 451 452 453 454 455 456 457 458

    def input_fc_infer(self, input_emb):
        """
        输入侧预测组网第一部分,将input转换为node同维度
        """
        # 组网与训练时保持一致
        input_fc_out = fluid.layers.fc(
            input=input_emb,
            size=self.node_emb_size,
            act=None,
            param_attr=fluid.ParamAttr(name="trans.input_fc.weight"),
T
tangwei 已提交
459
            bias_attr=fluid.ParamAttr(name="trans.input_fc.bias"), )
C
chengmo 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473
        return input_fc_out

    def layer_fc_infer(self, input_fc_out, layer_idx):
        """
        输入侧预测组网第二部分,将input映射到不同层次的向量空间
        """
        # 组网与训练保持一致,通过layer_idx指定不同层的FC
        input_layer_fc_out = fluid.layers.fc(
            input=input_fc_out,
            size=self.node_emb_size,
            act=self.act,
            param_attr=fluid.ParamAttr(
                name="trans.layer_fc.weight." + str(layer_idx)),
            bias_attr=fluid.ParamAttr(
T
tangwei 已提交
474
                name="trans.layer_fc.bias." + str(layer_idx)), )
C
chengmo 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        return input_layer_fc_out

    def classifier_layer_infer(self, input, node, layer_idx):
        # 为infer组网提供的简化版classifier,通过给定layer_idx调用不同层的分类器

        # 同样需要保持input与node的维度匹配
        input_expand = self._expand_layer(input, node, layer_idx)

        # 与训练网络相同的concat逻辑
        input_node_concat = fluid.layers.concat(
            input=[input_expand, node], axis=2)

        # 根据参数名param_attr调用不同的层的FC
        hidden_states_fc = fluid.layers.fc(
            input=input_node_concat,
            size=self.node_emb_size,
            num_flatten_dims=2,
            act=self.act,
            param_attr=fluid.ParamAttr(
T
for mat  
tangwei 已提交
494
                name="cls.concat_fc.weight." + str(layer_idx)),
T
tangwei 已提交
495 496
            bias_attr=fluid.ParamAttr(
                name="cls.concat_fc.bias." + str(layer_idx)))
C
chengmo 已提交
497
        return hidden_states_fc
C
Chengmo 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

    def check_version(self):
        """
        Log error and exit when the installed version of paddlepaddle is
        not satisfied.
        """
        err = "TDM-GPU need Paddle version 1.8 or higher is required, " \
            "or a suitable develop version is satisfied as well. \n" \
            "Please make sure the version is good with your code." \

        try:
            fluid.require_version('1.8.0')
            return True
        except Exception as e:
            print(err)
            return False