model.py 8.8 KB
Newer Older
F
frankwhzhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import paddle.fluid as fluid

from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
import numpy as np


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def input_data(self, is_infer=False):
        item_len = envs.get_global_env("hyper_parameters.item_len", None,
                                       self._namespace)
        user_slot_names = fluid.data(
            name='user_slot_names',
            shape=[None, 1],
            dtype='int64',
            lod_level=1)
        item_slot_names = fluid.data(
            name='item_slot_names',
            shape=[None, item_len],
            dtype='int64',
            lod_level=1)
        lens = fluid.data(name='lens', shape=[None], dtype='int64')
        labels = fluid.data(
            name='labels', shape=[None, item_len], dtype='int64', lod_level=1)

        inputs = [user_slot_names] + [item_slot_names] + [lens] + [labels]
        if is_infer:
            self._infer_data_var = inputs
            self._infer_data_loader = fluid.io.DataLoader.from_generator(
                feed_list=self._infer_data_var,
                capacity=64,
                use_double_buffer=False,
                iterable=False)
        else:
            self._data_var = inputs
            self._data_loader = fluid.io.DataLoader.from_generator(
                feed_list=self._data_var,
                capacity=10000,
                use_double_buffer=False,
                iterable=False)

        return inputs

    def default_normal_initializer(self, nf=128):
        return fluid.initializer.TruncatedNormal(
            loc=0.0, scale=np.sqrt(1.0 / nf))

    def default_regularizer(self):
        return None

    def default_fc(self, data, size, num_flatten_dims=1, act=None, name=None):
        return fluid.layers.fc(
            input=data,
            size=size,
            num_flatten_dims=num_flatten_dims,
            param_attr=fluid.ParamAttr(
                initializer=self.default_normal_initializer(size),
                regularizer=self.default_regularizer()),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.0),
                regularizer=self.default_regularizer()),
            act=act,
            name=name)

    def default_embedding(self, data, vocab_size, embed_size):
        reg = fluid.regularizer.L2Decay(
            1e-5)  # IMPORTANT, to prevent overfitting.
        embed = fluid.embedding(
            input=data,
            size=[vocab_size, embed_size],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Xavier(), regularizer=reg),
            is_sparse=True)

        return embed

    def default_drnn(self, data, nf, is_reverse, h_0):
        return fluid.layers.dynamic_gru(
            input=data,
            size=nf,
            param_attr=fluid.ParamAttr(
                initializer=self.default_normal_initializer(nf),
                regularizer=self.default_regularizer()),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.0),
                regularizer=self.default_regularizer()),
            is_reverse=is_reverse,
            h_0=h_0)

    def fluid_sequence_pad(self, input, pad_value, maxlen=None):
        """
        args:
            input: (batch*seq_len, dim)
        returns:
            (batch, max_seq_len, dim)
        """
        pad_value = fluid.layers.cast(
            fluid.layers.assign(input=np.array([pad_value], 'float32')),
            input.dtype)
        input_padded, _ = fluid.layers.sequence_pad(
            input, pad_value,
            maxlen=maxlen)  # (batch, max_seq_len, 1), (batch, 1)
        # TODO, maxlen=300, used to solve issues: https://github.com/PaddlePaddle/Paddle/issues/14164
        return input_padded

    def fluid_sequence_get_pos(self, lodtensor):
        """
        args:
            lodtensor: lod = [[0,4,7]]
        return:
            pos: lod = [[0,4,7]]
                 data = [0,1,2,3,0,1,3]
                 shape = [-1, 1]
        """
        lodtensor = fluid.layers.reduce_sum(lodtensor, dim=1, keep_dim=True)
        assert lodtensor.shape == (-1, 1), (lodtensor.shape())
        ones = fluid.layers.cast(lodtensor * 0 + 1,
                                 'float32')  # (batch*seq_len, 1)
        ones_padded = self.fluid_sequence_pad(ones,
                                              0)  # (batch, max_seq_len, 1)
        ones_padded = fluid.layers.squeeze(ones_padded,
                                           [2])  # (batch, max_seq_len)
        seq_len = fluid.layers.cast(
            fluid.layers.reduce_sum(
                ones_padded, 1, keep_dim=True), 'int64')  # (batch, 1)
        seq_len = fluid.layers.squeeze(seq_len, [1])

        pos = fluid.layers.cast(
            fluid.layers.cumsum(
                ones_padded, 1, exclusive=True), 'int64')
        pos = fluid.layers.sequence_unpad(pos, seq_len)  # (batch*seq_len, 1)
        pos.stop_gradient = True
        return pos

    def net(self, inputs, is_infer=False):
        hidden_size = envs.get_global_env("hyper_parameters.hidden_size", None,
                                          self._namespace)
        user_vocab = envs.get_global_env("hyper_parameters.user_vocab", None,
                                         self._namespace)
        item_vocab = envs.get_global_env("hyper_parameters.item_vocab", None,
                                         self._namespace)
        embed_size = envs.get_global_env("hyper_parameters.embed_size", None,
                                         self._namespace)
        #encode
        user_embedding = self.default_embedding(inputs[0], user_vocab,
                                                embed_size)
        user_feature = self.default_fc(
            data=user_embedding,
            size=hidden_size,
            num_flatten_dims=1,
            act='relu',
            name='user_feature_fc')

        item_embedding = self.default_embedding(inputs[1], item_vocab,
                                                embed_size)
        item_embedding = fluid.layers.sequence_unpad(
            x=item_embedding, length=inputs[2])

        item_fc = self.default_fc(
            data=item_embedding,
            size=hidden_size,
            num_flatten_dims=1,
            act='relu',
            name='item_fc')

        pos = self.fluid_sequence_get_pos(item_fc)
        pos_embed = self.default_embedding(pos, user_vocab, embed_size)
        pos_embed = fluid.layers.squeeze(pos_embed, [1])

        # item gru
        gru_input = self.default_fc(
            data=fluid.layers.concat([item_fc, pos_embed], 1),
            size=hidden_size * 3,
            num_flatten_dims=1,
            act='relu',
            name='item_gru_fc')

        item_gru_forward = self.default_drnn(
            data=gru_input, nf=hidden_size, h_0=user_feature, is_reverse=False)

        item_gru_backward = self.default_drnn(
            data=gru_input, nf=hidden_size, h_0=user_feature, is_reverse=True)
        item_gru = fluid.layers.concat(
            [item_gru_forward, item_gru_backward], axis=1)

        out_click_fc1 = self.default_fc(
            data=item_gru,
            size=hidden_size,
            num_flatten_dims=1,
            act='relu',
            name='out_click_fc1')

        click_prob = self.default_fc(
            data=out_click_fc1,
            size=2,
            num_flatten_dims=1,
            act='softmax',
            name='out_click_fc2')

        labels = fluid.layers.sequence_unpad(x=inputs[3], length=inputs[2])
        auc_val, batch_auc, auc_states = fluid.layers.auc(input=click_prob,
                                                          label=labels)
        if is_infer:
            self._infer_results["AUC"] = auc_val
            return
        loss = fluid.layers.reduce_mean(
            fluid.layers.cross_entropy(
                input=click_prob, label=labels))
        self._cost = loss
        self._metrics['auc'] = auc_val

    def train_net(self):
        input_data = self.input_data()
        self.net(input_data)

    def infer_net(self):
        input_data = self.input_data(is_infer=True)
        self.net(input_data, is_infer=True)