user_define_trainer.py 2.3 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tangwei 已提交
14

T
tangwei 已提交
15
import paddle.fluid as fluid
T
tangwei 已提交
16

T
tangwei 已提交
17 18
from fleetrec.core.trainers.transpiler_trainer import TranspileTrainer
from fleetrec.core.utils import envs
T
tangwei 已提交
19 20 21


class UserDefineTrainer(TranspileTrainer):
T
tangwei 已提交
22
    def __init__(self, config=None):
T
tangwei 已提交
23
        TranspileTrainer.__init__(self, config)
T
tangwei 已提交
24
        print("this is a demo about how to use user define trainer in fleet-rec")
T
tangwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
        self.regist_context_processor('train_pass', self.train)

    def init(self, context):
        self.model.net()
        self.model.metrics()
        self.model.avg_loss()
        optimizer = self.model.optimizer()
        optimizer.minimize(self.model._cost)

        self.fetch_vars = []
        self.fetch_alias = []
        self.fetch_period = self.model.get_fetch_period()

        metrics = self.model.get_metrics()
        if metrics:
            self.fetch_vars = metrics.values()
            self.fetch_alias = metrics.keys()
        context['status'] = 'train_pass'

    def train(self, context):
        # run startup program at once
        self._exe.run(fluid.default_startup_program())

        dataset = self._get_dataset()

        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
                                         print_period=self.fetch_period)

        context['is_exit'] = True