generate_synthetic_data.py 3.3 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random

class Dataset:
    def __init__(self):
        pass

class SyntheticDataset(Dataset):
    def __init__(self, sparse_feature_dim, query_slot_num, title_slot_num, dataset_size=10000):
        # ids are randomly generated
        self.ids_per_slot = 10
        self.sparse_feature_dim = sparse_feature_dim
        self.query_slot_num = query_slot_num
        self.title_slot_num = title_slot_num
        self.dataset_size = dataset_size

    def _reader_creator(self, is_train):
        def generate_ids(num, space):
            return [random.randint(0, space - 1) for i in range(num)]

        def reader():
            for i in range(self.dataset_size):
                query_slots = []
                pos_title_slots = []
                neg_title_slots = []
                for i in range(self.query_slot_num):
                    qslot = generate_ids(self.ids_per_slot,
                                         self.sparse_feature_dim)
M
debug  
malin10 已提交
42
                    qslot = [str(fea) + ':' + str(i)  for fea in qslot]
M
malin10 已提交
43 44 45 46
                    query_slots += qslot
                for i in range(self.title_slot_num):
                    pt_slot = generate_ids(self.ids_per_slot,
                                           self.sparse_feature_dim)
M
debug  
malin10 已提交
47
                    pt_slot = [str(fea) + ':' + str(i + self.query_slot_num) for fea in pt_slot]
M
malin10 已提交
48 49 50 51 52
                    pos_title_slots += pt_slot
                if is_train:
                    for i in range(self.title_slot_num):
                        nt_slot = generate_ids(self.ids_per_slot,
                                               self.sparse_feature_dim)
M
debug  
malin10 已提交
53
                        nt_slot = [str(fea) + ':' + str(i + self.query_slot_num + self.title_slot_num) for fea in nt_slot]
M
malin10 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                        neg_title_slots += nt_slot
                    yield query_slots + pos_title_slots + neg_title_slots
                else:
                    yield query_slots + pos_title_slots

        return reader

    def train(self):
        return self._reader_creator(True)

    def valid(self):
        return self._reader_creator(True)

    def test(self):
        return self._reader_creator(False)

if __name__ == '__main__':
    sparse_feature_dim = 1000001
    query_slots = 1
    title_slots = 1
    dataset_size = 10
    dataset = SyntheticDataset(sparse_feature_dim, query_slots, title_slots, dataset_size)
    train_reader = dataset.train()
    test_reader = dataset.test()
	
    with open("data/train/train.txt", 'w') as fout:
        for data in train_reader():
            fout.write(' '.join(data))
            fout.write("\n")

    with open("data/test/test.txt", 'w') as fout:
        for data in test_reader():
            fout.write(' '.join(data))
            fout.write("\n")