infer_reader.py 6.6 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
import random

try:
    import cPickle as pickle
except ImportError:
    import pickle

import numpy as np

from paddlerec.core.reader import ReaderBase
from paddlerec.core.utils import envs


class Reader(ReaderBase):
    def init(self):
        self.train_data_path = envs.get_global_env(
            "dataset.infer_sample.data_path", None)
        self.res = []
        self.max_len = 0
        self.neg_candidate_item = []
        self.neg_candidate_cat = []
        self.max_neg_item = 10000
        self.max_neg_cat = 1000

        data_file_list = os.listdir(self.train_data_path)
        for i in range(0, len(data_file_list)):
            train_data_file = os.path.join(self.train_data_path,
                                           data_file_list[i])
            with open(train_data_file, "r") as fin:
                for line in fin:
                    line = line.strip().split(';')
                    hist = line[0].split()
                    self.max_len = max(self.max_len, len(hist))
        fo = open("tmp.txt", "w")
        fo.write(str(self.max_len))
        fo.close()
        self.batch_size = envs.get_global_env(
            "dataset.infer_sample.batch_size", 32, None)
        self.group_size = self.batch_size * 20

    def _process_line(self, line):
        line = line.strip().split(';')
        hist = line[0].split()
        hist = [int(i) for i in hist]
        cate = line[1].split()
        cate = [int(i) for i in cate]
        return [hist, cate, [int(line[2])], [int(line[3])], [float(line[4])]]

    def generate_sample(self, line):
        """
        Read the data line by line and process it as a dictionary
        """

        def data_iter():
            # feat_idx, feat_value, label = self._process_line(line)
            yield self._process_line(line)

        return data_iter

    def pad_batch_data(self, input, max_len):
        res = np.array([x + [0] * (max_len - len(x)) for x in input])
        res = res.astype("int64").reshape([-1, max_len])
        return res

    def make_data(self, b):
        max_len = max(len(x[0]) for x in b)
        # item = self.pad_batch_data([x[0] for x in b], max_len)
        # cat = self.pad_batch_data([x[1] for x in b], max_len)
        item = [x[0] for x in b]
        cat = [x[1] for x in b]
        neg_item = [None] * len(item)
        neg_cat = [None] * len(cat)

        for i in range(len(b)):
            neg_item[i] = []
            neg_cat[i] = []
            if len(self.neg_candidate_item) < self.max_neg_item:
                self.neg_candidate_item.extend(b[i][0])
                if len(self.neg_candidate_item) > self.max_neg_item:
                    self.neg_candidate_item = self.neg_candidate_item[
                        0:self.max_neg_item]
            else:
                len_seq = len(b[i][0])
                start_idx = random.randint(0, self.max_neg_item - len_seq - 1)
                self.neg_candidate_item[start_idx:start_idx + len_seq + 1] = b[
                    i][0]

            if len(self.neg_candidate_cat) < self.max_neg_cat:
                self.neg_candidate_cat.extend(b[i][1])
                if len(self.neg_candidate_cat) > self.max_neg_cat:
                    self.neg_candidate_cat = self.neg_candidate_cat[
                        0:self.max_neg_cat]
            else:
                len_seq = len(b[i][1])
                start_idx = random.randint(0, self.max_neg_cat - len_seq - 1)
                self.neg_candidate_item[start_idx:start_idx + len_seq + 1] = b[
                    i][1]
            for _ in range(len(b[i][0])):
                neg_item[i].append(self.neg_candidate_item[random.randint(
                    0, len(self.neg_candidate_item) - 1)])
            for _ in range(len(b[i][1])):
                neg_cat[i].append(self.neg_candidate_cat[random.randint(
                    0, len(self.neg_candidate_cat) - 1)])

        len_array = [len(x[0]) for x in b]
        mask = np.array(
            [[0] * x + [-1e9] * (max_len - x) for x in len_array]).reshape(
                [-1, max_len, 1])
        target_item_seq = np.array(
            [[x[2]] * max_len for x in b]).astype("int64").reshape(
                [-1, max_len])
        target_cat_seq = np.array(
            [[x[3]] * max_len for x in b]).astype("int64").reshape(
                [-1, max_len])
        res = []
        for i in range(len(b)):
            res.append([
                item[i], cat[i], b[i][2], b[i][3], b[i][4], mask[i],
                target_item_seq[i], target_cat_seq[i], neg_item[i], neg_cat[i]
            ])
        return res

    def batch_reader(self, reader, batch_size, group_size):
        def batch_reader():
            bg = []
            for line in reader:
                bg.append(line)
                if len(bg) == group_size:
                    sortb = sorted(bg, key=lambda x: len(x[0]), reverse=False)
                    bg = []
                    for i in range(0, group_size, batch_size):
                        b = sortb[i:i + batch_size]
                        yield self.make_data(b)
            len_bg = len(bg)
            if len_bg != 0:
                sortb = sorted(bg, key=lambda x: len(x[0]), reverse=False)
                bg = []
                remain = len_bg % batch_size
                for i in range(0, len_bg - remain, batch_size):
                    b = sortb[i:i + batch_size]
                    yield self.make_data(b)

        return batch_reader

    def base_read(self, file_dir):
        res = []
        for train_file in file_dir:
            with open(train_file, "r") as fin:
                for line in fin:
                    line = line.strip().split(';')
                    hist = line[0].split()
                    cate = line[1].split()
                    res.append([hist, cate, line[2], line[3], float(line[4])])
        return res

    def generate_batch_from_trainfiles(self, files):
        data_set = self.base_read(files)
        random.shuffle(data_set)
        return self.batch_reader(data_set, self.batch_size,
                                 self.batch_size * 20)