dataloader_instance.py 8.2 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
17 18 19
from paddlerec.core.utils.envs import lazy_instance_by_fliename
from paddlerec.core.utils.envs import get_global_env
from paddlerec.core.utils.envs import get_runtime_environ
X
xujiaqi01 已提交
20
from paddlerec.core.reader import SlotReader
C
Chengmo 已提交
21
from paddlerec.core.trainer import EngineMode
C
Chengmo 已提交
22
from paddlerec.core.utils.util import split_files
T
tangwei 已提交
23

X
fix  
xjqbest 已提交
24

C
Chengmo 已提交
25 26 27 28 29 30 31 32
def dataloader_by_name(readerclass,
                       dataset_name,
                       yaml_file,
                       context,
                       reader_class_name="Reader"):

    reader_class = lazy_instance_by_fliename(readerclass, reader_class_name)

X
fix  
xjqbest 已提交
33 34 35 36 37 38 39 40
    name = "dataset." + dataset_name + "."
    data_path = get_global_env(name + "data_path")

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    def check_filelist(file_list, train_data_path):
        for root, dirs, files in os.walk(train_data_path):
            files = [f for f in files if not f[0] == '.']
            dirs[:] = [d for d in dirs if not d[0] == '.']
            if (files == None and dirs == None):
                return None
            else:
                # use files and dirs
                for file_name in files:
                    file_list.append(os.path.join(train_data_path, file_name))
                    print(os.path.join(train_data_path, file_name))
                for dirs_name in dirs:
                    dir_root.append(os.path.join(train_data_path, dirs_name))
                    check_filelist(file_list, os.path.join(
                        train_data_path, dirs_name))
                    print(os.path.join(train_data_path, dirs_name))
                return file_list

    #files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]
    files = []
    files = check_filelist(files, data_path)
C
Chengmo 已提交
62
    if context["engine"] == EngineMode.LOCAL_CLUSTER:
C
Chengmo 已提交
63 64
        files = split_files(files, context["fleet"].worker_index(),
                            context["fleet"].worker_num())
C
Chengmo 已提交
65
    print("file_list : {}".format(files))
C
Chengmo 已提交
66

X
fix  
xjqbest 已提交
67 68
    reader = reader_class(yaml_file)
    reader.init()
X
fix  
xjqbest 已提交
69

X
fix  
xjqbest 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader


C
Chengmo 已提交
93
def slotdataloader_by_name(readerclass, dataset_name, yaml_file, context):
X
fix  
xjqbest 已提交
94 95 96 97 98 99 100 101 102
    name = "dataset." + dataset_name + "."
    reader_name = "SlotReader"
    data_path = get_global_env(name + "data_path")

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def check_filelist(file_list, train_data_path):
        for root, dirs, files in os.walk(train_data_path):
            files = [f for f in files if not f[0] == '.']
            dirs[:] = [d for d in dirs if not d[0] == '.']
            if (files == None and dirs == None):
                return None
            else:
                # use files and dirs
                for file_name in files:
                    file_list.append(os.path.join(train_data_path, file_name))
                    print(os.path.join(train_data_path, file_name))
                for dirs_name in dirs:
                    dir_root.append(os.path.join(train_data_path, dirs_name))
                    check_filelist(file_list, os.path.join(
                        train_data_path, dirs_name))
                    print(os.path.join(train_data_path, dirs_name))
                return file_list

    #files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]
    files = []
    files = check_filelist(files, data_path)
C
Chengmo 已提交
124
    if context["engine"] == EngineMode.LOCAL_CLUSTER:
C
Chengmo 已提交
125 126
        files = split_files(files, context["fleet"].worker_index(),
                            context["fleet"].worker_num())
C
Chengmo 已提交
127 128
        print("file_list: {}".format(files))

X
fix  
xjqbest 已提交
129 130 131 132 133 134
    sparse = get_global_env(name + "sparse_slots", "#")
    if sparse == "":
        sparse = "#"
    dense = get_global_env(name + "dense_slots", "#")
    if dense == "":
        dense = "#"
X
fix  
xjqbest 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    padding = get_global_env(name + "padding", 0)
    reader = SlotReader(yaml_file)
    reader.init(sparse, dense, int(padding))

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader
T
tangwei 已提交
160

X
fix  
xjqbest 已提交
161

C
Chengmo 已提交
162
def slotdataloader(readerclass, train, yaml_file, context):
X
xujiaqi01 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    if train == "TRAIN":
        reader_name = "SlotReader"
        namespace = "train.reader"
        data_path = get_global_env("train_data_path", None, namespace)
    else:
        reader_name = "SlotReader"
        namespace = "evaluate.reader"
        data_path = get_global_env("test_data_path", None, namespace)

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]
C
Chengmo 已提交
178
    if context["engine"] == EngineMode.LOCAL_CLUSTER:
C
Chengmo 已提交
179 180
        files = split_files(files, context["fleet"].worker_index(),
                            context["fleet"].worker_num())
C
Chengmo 已提交
181
        print("file_list: {}".format(files))
X
xujiaqi01 已提交
182

X
fix  
xjqbest 已提交
183 184 185 186 187 188
    sparse = get_global_env("sparse_slots", "#", namespace)
    if sparse == "":
        sparse = "#"
    dense = get_global_env("dense_slots", "#", namespace)
    if dense == "":
        dense = "#"
X
xujiaqi01 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    padding = get_global_env("padding", 0, namespace)
    reader = SlotReader(yaml_file)
    reader.init(sparse, dense, int(padding))

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader