dataloader_instance.py 7.4 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
17 18 19
from paddlerec.core.utils.envs import lazy_instance_by_fliename
from paddlerec.core.utils.envs import get_global_env
from paddlerec.core.utils.envs import get_runtime_environ
X
xujiaqi01 已提交
20
from paddlerec.core.reader import SlotReader
C
Chengmo 已提交
21
from paddlerec.core.trainer import EngineMode
C
Chengmo 已提交
22
from paddlerec.core.utils.util import split_files
T
tangwei 已提交
23

X
fix  
xjqbest 已提交
24

C
Chengmo 已提交
25 26 27 28 29 30 31 32
def dataloader_by_name(readerclass,
                       dataset_name,
                       yaml_file,
                       context,
                       reader_class_name="Reader"):

    reader_class = lazy_instance_by_fliename(readerclass, reader_class_name)

X
fix  
xjqbest 已提交
33 34 35 36 37 38 39 40 41
    name = "dataset." + dataset_name + "."
    data_path = get_global_env(name + "data_path")

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]
C
Chengmo 已提交
42 43 44
    files.sort()

    need_split_files = False
C
Chengmo 已提交
45
    if context["engine"] == EngineMode.LOCAL_CLUSTER:
C
Chengmo 已提交
46 47 48 49 50 51 52 53
        # for local cluster: split files for multi process
        need_split_files = True
    elif context["engine"] == EngineMode.CLUSTER and context[
            "cluster_type"] == "K8S":
        # for k8s mount mode, split files for every node
        need_split_files = True
    print("need_split_files: {}".format(need_split_files))
    if need_split_files:
C
Chengmo 已提交
54 55
        files = split_files(files, context["fleet"].worker_index(),
                            context["fleet"].worker_num())
C
Chengmo 已提交
56

C
Chengmo 已提交
57
    print("file_list : {}".format(files))
C
Chengmo 已提交
58

X
fix  
xjqbest 已提交
59 60
    reader = reader_class(yaml_file)
    reader.init()
X
fix  
xjqbest 已提交
61

X
fix  
xjqbest 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader


C
Chengmo 已提交
85
def slotdataloader_by_name(readerclass, dataset_name, yaml_file, context):
X
fix  
xjqbest 已提交
86 87 88 89 90 91 92 93 94 95
    name = "dataset." + dataset_name + "."
    reader_name = "SlotReader"
    data_path = get_global_env(name + "data_path")

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]
C
Chengmo 已提交
96 97 98
    files.sort()

    need_split_files = False
C
Chengmo 已提交
99
    if context["engine"] == EngineMode.LOCAL_CLUSTER:
C
Chengmo 已提交
100 101 102 103 104 105 106 107
        # for local cluster: split files for multi process
        need_split_files = True
    elif context["engine"] == EngineMode.CLUSTER and context[
            "cluster_type"] == "K8S":
        # for k8s mount mode, split files for every node
        need_split_files = True

    if need_split_files:
C
Chengmo 已提交
108 109
        files = split_files(files, context["fleet"].worker_index(),
                            context["fleet"].worker_num())
C
Chengmo 已提交
110

X
fix  
xjqbest 已提交
111 112 113 114 115 116
    sparse = get_global_env(name + "sparse_slots", "#")
    if sparse == "":
        sparse = "#"
    dense = get_global_env(name + "dense_slots", "#")
    if dense == "":
        dense = "#"
X
fix  
xjqbest 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    padding = get_global_env(name + "padding", 0)
    reader = SlotReader(yaml_file)
    reader.init(sparse, dense, int(padding))

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader
T
tangwei 已提交
142

X
fix  
xjqbest 已提交
143

C
Chengmo 已提交
144
def slotdataloader(readerclass, train, yaml_file, context):
X
xujiaqi01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    if train == "TRAIN":
        reader_name = "SlotReader"
        namespace = "train.reader"
        data_path = get_global_env("train_data_path", None, namespace)
    else:
        reader_name = "SlotReader"
        namespace = "evaluate.reader"
        data_path = get_global_env("test_data_path", None, namespace)

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]
C
Chengmo 已提交
160 161 162
    files.sort()

    need_split_files = False
C
Chengmo 已提交
163
    if context["engine"] == EngineMode.LOCAL_CLUSTER:
C
Chengmo 已提交
164 165 166 167 168 169 170 171
        # for local cluster: split files for multi process
        need_split_files = True
    elif context["engine"] == EngineMode.CLUSTER and context[
            "cluster_type"] == "K8S":
        # for k8s mount mode, split files for every node
        need_split_files = True

    if need_split_files:
C
Chengmo 已提交
172 173
        files = split_files(files, context["fleet"].worker_index(),
                            context["fleet"].worker_num())
X
xujiaqi01 已提交
174

X
fix  
xjqbest 已提交
175 176 177 178 179 180
    sparse = get_global_env("sparse_slots", "#", namespace)
    if sparse == "":
        sparse = "#"
    dense = get_global_env("dense_slots", "#", namespace)
    if dense == "":
        dense = "#"
X
xujiaqi01 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    padding = get_global_env("padding", 0, namespace)
    reader = SlotReader(yaml_file)
    reader.init(sparse, dense, int(padding))

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader