- 09 7月, 2021 1 次提交
-
-
由 cc 提交于
* PTQ save quantized model * Wrap simulated layer * post process the inference model
-
- 05 7月, 2021 2 次提交
- 22 6月, 2021 1 次提交
-
-
由 cc 提交于
* dygraph post training quantization * refine the ptq config * refine ptq quantizer
-
- 09 6月, 2021 1 次提交
-
-
由 cc 提交于
* Add wrap for functional api * Refine the wraped api * Add unit test for quant functional layers * Update all unit tests for dygraph qat
-
- 12 5月, 2021 1 次提交
-
-
由 cc 提交于
-
- 02 4月, 2021 1 次提交
-
-
由 cc 提交于
-
- 26 3月, 2021 1 次提交
-
-
由 cc 提交于
* Use layer to calculate output scale * add backward for moving_average_abs_max_scale and save output scales to op's attr
-
- 24 3月, 2021 1 次提交
-
-
由 cc 提交于
* Refine saving output scale to infer program
-
- 21 3月, 2021 1 次提交
-
-
由 guofei 提交于
* Fix skip_quant in QAT
-
- 19 3月, 2021 1 次提交
-
-
由 cc 提交于
* Refine calculating output scale of dygraph qat, test=develop
-
- 17 3月, 2021 1 次提交
-
-
由 cc 提交于
-
- 12 3月, 2021 1 次提交
-
-
由 guofei 提交于
* Support loading parameters from checkpoint to save quantized model * Fix the unittest test_moving_average_abs_max_scale_op * Add unittest of save_quantized_model from checkpoint * Add comments to explain the function
-
- 20 1月, 2021 1 次提交
-
-
由 guofei 提交于
* Fix the error of save_quantized_model
-
- 13 1月, 2021 2 次提交
-
-
由 Bai Yifan 提交于
-
由 huangxu96 提交于
* Implemented AddQuantDequantPass in imperative quantization. * Supported LeakyReLU Quantization * For meeting coverage rate. * Changed the file name of test of AddQuantDequant * Implemented more Quantized NoWeightLayers. * Fix the loss cannot align problem between static and dynamic model quantization, add swish as supported quantized layer in imperative quantization. * remove noweight_list * support 2.0 API such as Pool2D and ReLu
-
- 08 1月, 2021 1 次提交
-
-
由 guofei 提交于
* Quantization supports 2.0 APIs * Fix the error of save_quantized_model
-
- 27 11月, 2020 1 次提交
-
-
由 guofei 提交于
* Optimiz the unittest test_imperative_out_scale test=develop
-
- 25 11月, 2020 1 次提交
-
-
由 huangxu96 提交于
* Impelement 2.0 API version Conv2d and Linear layer quantization in imperative mode. * use cudnn softmax in static Lenet * Modified ChannelwiseQAT Unittest for 2.0 API. * For CI python coverage.
-
- 24 11月, 2020 1 次提交
-
-
由 Leo Chen 提交于
* upgrade comment string to raw string * fix string in * fix string with ' ' * revert update on comments * upgrade only necessary * fix sample code checker * fix comments with '''
-
- 18 11月, 2020 1 次提交
-
-
由 Bai Yifan 提交于
* support user-defined quant and preprocess
-
- 14 10月, 2020 1 次提交
-
-
由 guofei 提交于
* Implement the function of OueScaleForTraining/OutScaleForInference in dygraph test=develop
-
- 21 9月, 2020 1 次提交
-
-
由 huangxu96 提交于
* Finished ChannelWiseQuantDequantAbsMaxOp and Passed unittests. * Finished channel-wise quantize strategy in imperative quantization. * Added Cuda code of ChannelWiseQuantDequantMaxAbsOP Add Cuda code of ChannelWiseQuantDequantMaxAbsOp * Add quant_axis for channel_wise quant. * fixed a bug in unnitests, which will not trigger axis = 1 case and cannot meet the coverage rate requirement. * Added some assert infomation and fixed some coding style mistakes.
-
- 18 9月, 2020 1 次提交
-
-
由 Zhen Wang 提交于
-
- 10 9月, 2020 1 次提交
-
-
由 Zhen Wang 提交于
-
- 31 8月, 2020 1 次提交
-
-
由 qingqing01 提交于
* Move hapi form paddle/incubate to paddle * Remove vision/datasets/utils.py and clean code * Add sample code for conll05 * Print pull path when saving model * Fix sample code after paramter_list of SGD is changed to parameters * Fix bug in wmt16 datase
-
- 27 8月, 2020 1 次提交
-
-
由 Aurelius84 提交于
* add InputSpec * add unittest for tensorSpec and SimpleNet
-
- 29 7月, 2020 1 次提交
-
-
由 Chen Weihang 提交于
* remove ProgramTranslator.save_inference_model * adapt save_quantized_model * revert buffer check implemention * remove useless import function
-
- 11 7月, 2020 1 次提交
-
-
由 Zhen Wang 提交于
* Add the imperative quantization aware training. * This is the python part of Imperative QAT. test=develop
-