- 26 10月, 2021 1 次提交
-
-
由 Li Min 提交于
功能:本PR的目标是提高attention模块的计算性能。 为了减少框架层对op的调度开销,本PR通过在C++层手动实现attention模块,对外提供attention 大op; 为了减少防存开销,本PR采取了两种优化方法: (1)在q,k,v计算时通过共享输入X,将该处的gemm,transpose和bias add从三次调用减少为一次; (2)使用kernel融合优化技术,在不同cuda kernel之间通过寄存器传输数据;
-
- 25 10月, 2021 1 次提交
-
-
由 Li Min 提交于
In fused_attention op and fused_ffn op, the fused bias_add+dropout+residual+layernorm kernel or bias_add+dropout+residual kernel is used. To ease the use of this kernel, we provide a wrapper in this PR. 1.To reuse the increment computing code, we exact the corresponding code to "GetSeedDataAndIncrement" routine in dropout_impl_util.h. 2.The fused_dropout_helper.h provides the fused dropout kernel wrapper. Note: the test of this warper will be provided in the following fused_attention_op and fused_ffn PRs.
-