- 23 7月, 2019 1 次提交
-
-
由 jiaqi 提交于
(1)support patch data (merge slots of instances of same line id, modify dense layer which changes its size) (2)add fleet load_one_table interface, support load from paddle model and load from pslib model (3)fix push sparse bug which cause push sparse cost more time(about 10% in my testcase) (4)when some slots are not in one of your network (join/update, etc.),data feed、collect label info、push/pull sparse will skip these slots, instead of throw error. (5)add more debug info in TrainFilesWithProfiler
-
- 24 5月, 2019 1 次提交
-
-
由 guru4elephant 提交于
* polish_executor_and_add_ctx_cache
-
- 15 5月, 2019 1 次提交
-
-
由 jiaqi 提交于
* add save/load model, shrink table, cvm, config file & fix pull dense bug test=develop * fix global shuffle bug, fix pull dense bug, fix release memeory bug, fix shrink error add client flush, add get data size test=develop * fix global shuffle bug test=develop * fix global shuffle bug test=develop * fix code style test=develop * fix code style & modify pslib cmake test=develop * fix error of _role_maker test=develop * fix code style test=develop * fix code style test=develop * fix code style test=develop * fix code style test=develop * fix code style test=develop * fix windows compile error of fleet test=develop * fix global shuffle bug * add comment test=develop * update pslib.cmake test=develop * fix fill sparse bug test=develop * fix push sparse bug test=develop
-
- 29 3月, 2019 13 次提交
-
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
add data_generator into paddle.fluid.incubate.data_generator, add op run log in hogwild_device_worker and downpour_device_worker test=develop
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
add dist_multi_trainer for distributed training, add trainer_factory and device_worker_factory so that we can easily extend new training mode, add pull dense worker which is a singleton for parameter fetching
-