1. 08 11月, 2016 1 次提交
  2. 07 11月, 2016 2 次提交
    • L
      abstract outputSize function in CNN-related layers (#314) · e802471c
      luotao1 提交于
      e802471c
    • Y
      Fix SRL hang when exit. (#291) · e05f4ff2
      Yu Yang 提交于
      * Fix SRL hang when exit.
      
      * Error occurred when enable Async Load in TestDataProvider.
        * It because DataProvider is calling getNextBatchInternal in one thread, and destructing DataProvider in other thread.
        * Add wait routine in DataProvider destructing.
      * Also fix another bug, when destructing TestDataProvider and do not read any test data.
      
      Fix #286
      
      * Follow comments, Use mutex is cool!
      e05f4ff2
  3. 05 11月, 2016 1 次提交
    • E
      Add elementwise math operations (#343) · 6c3a678c
      emailweixu 提交于
      * Add elementwise math operations
      This allows use to use expressions like: y=log(1+exp(x))
      Also added unittests for ActivationFunction
      * Enforce keyword arguments for non-positional arguments
      * Add LogActivation to doc
      6c3a678c
  4. 02 11月, 2016 1 次提交
    • Q
      Add job=time in trainer, refine cudnn_conv to reduce gpu memory and speed up training. (#218) · 45c81a41
      qingqing01 提交于
      * Add benchmark for PaddlePaddle, tensorflow and caffe
      
      * ConvProjection to reduce memory for goolenet
      
      * Add unit test for ConvProjection.
      1. unit test in test_LayerGrad.
      2. compare the ConvPorjection and CudnnConvLayer, also compare the concat_layer+img_conv_layer and concat_layer_conv_projection.
      
      * Reduce cudnn_conv memory and add benchmark document.
      1. Use TmpMatrix as the workspace in cudnn_conv to reduce gpu memory. It reduce lots of memory.
      2. Add benchmark document.
      3. fix smallnet_mnist_cifar.py in paddle.
      
      * Add job=time and refine cudnn_conv to reduce gpu memroy and speed up
      
      * Refine cudnn_conv and shared biases operation in concat_layer and mixed_layer.
      
      * follow comments
      
      * follow comments
      
      * Use unique_ptr to prevent memory leaks in CudnnConvLayer.
      45c81a41
  5. 24 10月, 2016 1 次提交
  6. 17 10月, 2016 1 次提交
  7. 14 10月, 2016 1 次提交
    • L
      hierarchical rnn document, add new config example (#106) · cebdb667
      luotao1 提交于
      * hierarchical rnn document, add new config example
      
      * update inputs_type of label
      
      * add check for unsupported config
      
      * refine hierarchical document
      
      * refine doc title
      
      * update docs, fix paddle to PaddlePaddle
      
      * follow comments
      cebdb667
  8. 09 10月, 2016 1 次提交
  9. 08 10月, 2016 1 次提交
  10. 28 9月, 2016 1 次提交
  11. 27 9月, 2016 1 次提交
  12. 23 9月, 2016 1 次提交
  13. 20 9月, 2016 2 次提交
    • L
      Shrink batch size on unit test for Mac OS X · 7ff8e762
      liaogang 提交于
      7ff8e762
    • Y
      Add min_pool_size, Add default value of should_shuffle (#70) · 90b9cba7
      Yu Yang 提交于
      * min_pool_size would be infinite by default.
        * add unittest for min_pool_size
      * Fix bug in can_over_batch_size
        * add unittest for can_over_batch_size
      * Add DEFINE_PROVIDER_EX
      * Add default value of should_shuffle
        * When training, the default value of should_shuffle is True.
        * When testing, the default value of should_shuffle is False.
        * User a set a provider should_shuffle or not by pass it to `@provider`
        * should_shuffle can handle a list of value, not just boolean
      * Add input order mapping by using name
        * Add unittest
      * Add check to check input format.
        * Default is close for speed reason.
        * User could stop train when check error, or continue train without
          this train sample.
      * use deque instead of vector in generators pool, make erase
        generator faster.
      * Add chinese/english documentation
      * Make should shuffle = false in unittest
      * Add python files to depends.
      90b9cba7
  14. 17 9月, 2016 1 次提交
  15. 16 9月, 2016 1 次提交
  16. 14 9月, 2016 2 次提交
  17. 12 9月, 2016 2 次提交
  18. 08 9月, 2016 2 次提交
  19. 30 8月, 2016 1 次提交
  20. 29 8月, 2016 1 次提交