1. 27 9月, 2019 3 次提交
  2. 26 9月, 2019 11 次提交
  3. 25 9月, 2019 6 次提交
    • Z
      add kernel for fill_op, test=develop (#19719) · b1bb2384
      zhongpu 提交于
      * add kernel for fill_op, test=develop
      
      * modify PADDLE_ENFORCE to PADDLE_ENFORCE_EQ, test=develop
      
      * add op test for fill_op, test=develop
      
      * REGISTER COP CUDA KERNEL, test=develop
      
      * update test_fill_op.py, test=develop
      
      * change FillConstantOpVarTypeInference to FillOpVarTypeInference, test=develop
      
      * fix op test, test=develop
      
      * add head file, test=develop
      b1bb2384
    • W
      add support tensor and tensorlist for strided_slice OP (#19929) · 382d099d
      wangchaochaohu 提交于
      * add support tensor and tensorlist for strided_slice OP test=develop
      
      * fix the commnet test=develop
      
      * fix test=develop
      
      * fix the bug test=develop
      
      * delete log test=develop
      
      * fix API.spec test=develop
      
      * fix test=develop
      382d099d
    • L
      Fix OpTest of bn (#19062) · 619a241b
      lvmengsi 提交于
      * fix bn
      619a241b
    • B
      add support of matmul with multiple head even different width and height (#19708) · c670058a
      Bob Zhu 提交于
      * add support of matmul with multiple head even different width and height
      
      Original matmul with multiple head supports only the mat_a.width == mat_b.height,
      in that case, mat_b will be horizontally split. In this patch, we extend the
      support when mat_a.width != mat_b.height but mat_a.width/head_number == mat_b.height,
      in this case, mab_b will be vertically split.
      
      One example is A is [3, 8], B is [2, 16], head_number is 4. In this
      case, A will be split as [3, 2], B will be (vertically) split as
      [2, 4]. The final result will be 4 matrix of 4 matrix of [3,4], i.e. [3, 16]
      
      test=develop
      
      * add support of matmul with multiple head even different width and height
      
      Original matmul with multiple head supports only the mat_a.width == mat_b.height,
      in that case, mat_b will be horizontally split. In this patch, we extend the
      support when mat_a.width != mat_b.height but mat_a.width/head_number == mat_b.height,
      in this case, mab_b will be vertically split.
      
      One example is A is [3, 8], B is [2, 16], head_number is 4. In this
      case, A will be split as [3, 2], B will be (vertically) split as
      [2, 4]. The final result will be 4 matrix of 4 matrix of [3,4], i.e. [3, 16]
      
      test=develop
      
      * refactor the code of matmul with multiple head even different width and height
      
      test=develop
      c670058a
    • L
      refine ctc align op with padding (#19926) · 6884dc80
      Liufang Sang 提交于
      * refine ctc align op with padding 
      * refine api sample code
      6884dc80
    • A
      Removing length dims constraints of seq_pad and seq_unpad (#19497) · 99a9615a
      Aurelius84 提交于
      * Removing last dims constraints of seq_pad and seq_unpad test=develop
      
      * fix test_layer api code test=develop
      
      * fix sequence_pad_op.cc conflict test=develop
      
      * remove test_analyzer_mm_dnn test=develop
      
      * fix vectorize bug test=develop
      
      * fix vectorize<int> test=develop
      99a9615a
  4. 24 9月, 2019 9 次提交
  5. 23 9月, 2019 3 次提交
  6. 22 9月, 2019 1 次提交
  7. 21 9月, 2019 2 次提交
  8. 20 9月, 2019 5 次提交
    • A
      support 2-level lod of input in sequence_pool (#19839) · fcf53e55
      Aurelius84 提交于
      * support 2-level lod of input in sequence_pool test=develop
      
      * fix lod level bug in .cu test=develop
      fcf53e55
    • Z
      group_norm support data_layout:NHWC, test=develop, test=document_preview (#19614) · 93364b45
      Zhang Ting 提交于
      1. group_norm support data_layout=NHWC
      2. modified doc of group_norm
      93364b45
    • J
      [MKL-DNN] LRN refactoring (#19798) · 619c797a
      Jacek Czaja 提交于
      - LRN mkl-dnn kernel refactor
      
      test=develop
      
      - compilation fix
      
      - Another compilation fix
      
      - Compilation fix
      
      - another compilation fix
      
      - compilation fix
      
      - Crash fix
      
      - optional LRN mkldnn workspace
      
      - Added mid allocation
      
      - Workaround for tests
      
      - Removed gradient from is_test ut
      
      - Removed mid for inference
      
      - Reverted LRN mid removal for is_test
      
      - PADDLE_ENFORCE adjusted
      
      - Rebase to templatization commit
      
      - Compilation fix
      
      - compilation fix
      
      test=develop
      
      - lint
      
      test=develop
      
      - Fix to crash
      
      - Rebase to recent codebase
      
       - lin
      
      - lint
      
      - compilation fix
      619c797a
    • Z
      modified interpolate op to support tensor attribute, test=develop, test=document_preview (#19287) · 439d95e1
      Zhang Ting 提交于
      modified interpolate_op to support tensor attribute
      
      1. the parameter out_shape of image_resize、resize_nearest/bilinear/trilinear can be a list or a 1-D tensor variable. If a list, each element can be an integer or a tensor variable with shape: [1].
      
      2. the parameter scale of above Ops can be a 1-D tensor variable.
      modified document of image_resize, resize_nearest, resize_bilinear, resize_trilinear and add some code example.
      439d95e1
    • Z
      add crop_tensor_op, test=develop, test=document_preview (#19314) · b3888941
      Zhang Ting 提交于
      add crop_tensor op. The main difference with crop is :
      
      1. If the argument shape is a list, each element is an integer or a tensor variable with shape: [1]. This way is suitable for the case that the shape may be changed each iteration.
      
      2. If the argument shape is a variable. Its rank must be 1. In crop op, the rank of shape must be the same as x
      
      offsets can be a list, in which each element is an integer or a tensor variavle with shape: [1].
      b3888941