- 23 10月, 2022 1 次提交
-
-
由 Nyakku Shigure 提交于
* update config * re-blacken python code * temporarily disable date and diff_py_file * skip a format
-
- 11 10月, 2022 1 次提交
-
-
由 Nyakku Shigure 提交于
-
- 27 9月, 2022 1 次提交
-
-
由 Nyakku Shigure 提交于
* [CodeStyle] remove all future import * revert test_error.py * restore future import in example code
-
- 14 9月, 2022 1 次提交
-
-
由 Nyakku Shigure 提交于
* trim trailing whitespace * fix `.cmake-format.py` * revert npu ut changes, avoid npu ci error
-
- 26 8月, 2022 1 次提交
-
-
由 wanghuancoder 提交于
-
- 17 8月, 2022 1 次提交
-
-
由 Nyakku Shigure 提交于
[CodeStyle][NPU] use np.testing.assert_allclose instead of self.assertTrue(np.allclose(...)) (part 1) (#44988) * autofix * try resolve precision issues * revert some changes * clean some `err_msg` * 0.0001 -> 1e-4 * update commented assert code * try to fix some shape errors * `numpy` -> `np` * empty commit, trigger kunlun ci, test=kunlun * empty commit, retrigger kunlun ci, test=kunlun * empty commit, trigger kunlun ci, try fix npu memcpy_h2d, test=kunlun * try fix npu import error, test=kunlun
-
- 13 6月, 2022 1 次提交
-
-
由 YuanRisheng 提交于
-
- 05 6月, 2022 1 次提交
-
-
由 Sing_chan 提交于
* use yapf to format all python file * yapf exclude two unittests file for they rely on writing and reading file, and format will break them * disable diff_py_file because too many diff files cause command following failed
-
- 17 5月, 2022 1 次提交
-
-
由 Chen Weihang 提交于
* adapt faster tokenizer op * add eager test * add unittest
-
- 24 4月, 2022 1 次提交
-
-
由 pangyoki 提交于
* test=py3-eager * test=py3-eager * test=py3-eager
-
- 25 3月, 2022 1 次提交
-
-
由 Jiabin Yang 提交于
* refactor eager flags * fix flags error when we switch from eager to dygraph * fix ci problem * fix ci * fix ci * merge develop and fix code style * merge develop and fix code style * fix op test error * fix op test error * fix op test error * fix op test error * fix op test error * merge develop
-
- 22 12月, 2021 1 次提交
-
-
由 Zhanlue Yang 提交于
-
- 20 10月, 2021 1 次提交
-
-
由 Steffy-zxf 提交于
Add Tokenizer related functionalities for Transformer model in order that the process of training and predicting is consistent. * support the text string as an input Tensor * support the "VOCAB"unordered_map<wstring, int> as an input Tensor to lookup tokens * Tokenizer used for BERT. This tokenizer applies an end-to-end, text string to wordpiece tokenization. * It first applies basic tokenization, followed by wordpiece tokenization.
-