1. 26 7月, 2018 1 次提交
  2. 18 7月, 2018 1 次提交
  3. 12 7月, 2018 1 次提交
  4. 11 7月, 2018 2 次提交
  5. 05 7月, 2018 3 次提交
  6. 03 7月, 2018 5 次提交
  7. 30 6月, 2018 2 次提交
  8. 28 6月, 2018 1 次提交
  9. 27 6月, 2018 1 次提交
  10. 23 6月, 2018 1 次提交
  11. 22 6月, 2018 1 次提交
  12. 21 6月, 2018 5 次提交
  13. 20 6月, 2018 2 次提交
  14. 19 6月, 2018 2 次提交
  15. 16 6月, 2018 1 次提交
  16. 14 6月, 2018 2 次提交
    • Q
      Fix NCCLBcast hang up bug in Parallel Executor (#11377) · 046bb5c8
      Qiyang Min 提交于
      * 1. Create buddy allocator in each places before NcclBcast the variables
      2. Check the memory usage of ALL gpus rather than the first one
      
      * 1. Make NCCLGroupGuard guards only the ncclBcast part, which avoid ncclGroupEnd blocking the exception throwing
      2. NOTE the usage of NCCLGroupGuard
      
      * Remove the memory usage check of gpus
      
      * Fix code style
      046bb5c8
    • X
      Remove cuptiFinalize. · d2afd210
      Xin Pan 提交于
      In cupti samples, only cuptiFlush is used.
      I can't find any places calling cuptiFinalize and
      this API can error out as not_implemented in some
      cuda installation.
      d2afd210
  17. 13 6月, 2018 1 次提交
  18. 12 6月, 2018 1 次提交
  19. 11 6月, 2018 1 次提交
  20. 08 6月, 2018 2 次提交
  21. 07 6月, 2018 1 次提交
    • M
      Mkldnn layout (#11040) · 3ff9ba0e
      mozga-intel 提交于
      * Add MKLDNN layout support in Paddle
      
      Add MKLDNN layout in Paddle so that MKLDNN friendly memory layout
      can be used in MKLDNN enabled OP kernel. Before this commit, NCHW
      is hardcode to be used in all MKLDNN op kernels. As a result,
      non-optimized execution path is selected in MKLDNN primitive which
      bring worse performance.
      Besides framework change, three MKLDNN OP kernels were updated
      for using new MKLDNN layout. They are conv/pool2d/batch_norm.
      Other MKLDNN OP kernels need be also updated in similar way to
      achieve best performance.
      
      * Add MKLDNN layout support in activation OP
      
      * Don't populate layout from input to output when kMKLDNN in
      
      * Refine pool mkldnn op kernel
      
      * MKLDNN layout
      
      * Remove the inferitance from tensor file
      
      * MKLDNN layout: refactoring
      
      * Remove additional #define to register new operator
      
      * Prepare mkldnn tests to work with layout
      3ff9ba0e
  22. 06 6月, 2018 3 次提交