- 13 10月, 2016 1 次提交
-
-
由 luotao1 提交于
* add interface and unittest for nce layer * follow comments
-
- 11 10月, 2016 1 次提交
-
-
由 Yu Yang 提交于
-
- 10 10月, 2016 2 次提交
- 09 10月, 2016 1 次提交
-
-
由 qingqing01 提交于
* support rectangle padding, stride, window and input for PoolProjection * Follow comments. 1. Remove start 2. refine img_pool_a/b.conf for test_NetworkCompare 3. Split unit test * Modify the test in img_layers.py
-
- 08 10月, 2016 2 次提交
- 30 9月, 2016 2 次提交
- 29 9月, 2016 7 次提交
-
-
由 liaogang 提交于
* follow comments to fix bugs
-
由 Yu Yang 提交于
-
由 luotao1 提交于
* refine sparse momentum api and unittest * fix unittests bug
-
由 emailweixu 提交于
This bug occasionally causes dead lock in test_RecurrentGradientMachine In general, conditional_variable::notify should be used together with mutex for changing condition.
-
由 luotao1 提交于
-
由 Yu Yang 提交于
* Add noavx to docker * Not to use directory to split Docker image.
-
由 Yu Yang 提交于
-
- 28 9月, 2016 2 次提交
- 27 9月, 2016 2 次提交
-
-
由 emailweixu 提交于
* Correctly handling multiple inputs and integer inputs for recurrent_group * Fix ScatterAgentLayer for generation * Revert sequence_(nest)_rnn.conf
-
由 luotao1 提交于
* Add `device` parameter to ExtraAttr in trainer_config_helpers. * add unittest for it.
-
- 26 9月, 2016 2 次提交
- 24 9月, 2016 1 次提交
-
-
由 Zrachel 提交于
Local training with "sparse_update = True" parameter triggers kSgdSparseCpuTraining mode, fix bugs under it.
-
- 23 9月, 2016 4 次提交
-
-
由 liaogang 提交于
-
由 qingqing01 提交于
-
由 dangqingqing 提交于
-
由 Yu Yang 提交于
* Also refine unittest to multiple iteration to prevent luckily random number.
-
- 21 9月, 2016 1 次提交
-
-
由 liaogang 提交于
-
- 20 9月, 2016 7 次提交
-
-
由 liaogang 提交于
-
由 liaogang 提交于
-
由 liaogang 提交于
* it makes unit test failed.
-
由 liaogang 提交于
* using map to replace unordered_map on Mac
-
由 Yu Yang 提交于
* remove unnecessary field set in ParameterConfig, Evaluators, etc
-
由 Luo Tao 提交于
-
由 Yu Yang 提交于
* min_pool_size would be infinite by default. * add unittest for min_pool_size * Fix bug in can_over_batch_size * add unittest for can_over_batch_size * Add DEFINE_PROVIDER_EX * Add default value of should_shuffle * When training, the default value of should_shuffle is True. * When testing, the default value of should_shuffle is False. * User a set a provider should_shuffle or not by pass it to `@provider` * should_shuffle can handle a list of value, not just boolean * Add input order mapping by using name * Add unittest * Add check to check input format. * Default is close for speed reason. * User could stop train when check error, or continue train without this train sample. * use deque instead of vector in generators pool, make erase generator faster. * Add chinese/english documentation * Make should shuffle = false in unittest * Add python files to depends.
-
- 19 9月, 2016 3 次提交
- 17 9月, 2016 2 次提交