1. 15 9月, 2017 1 次提交
  2. 07 9月, 2017 2 次提交
  3. 06 9月, 2017 1 次提交
  4. 05 9月, 2017 1 次提交
    • F
      WIP · e76fa85c
      fengjiayi 提交于
      e76fa85c
  5. 09 8月, 2017 1 次提交
  6. 08 8月, 2017 1 次提交
    • Y
      fix some enforce (#3301) · 2af35002
      Yan Chunwei 提交于
      * fix some enforce
      
      * remove compatible_type to avoid compile error
      
      * remove shared_ptr
      
      * fix tensor error msg
      2af35002
  7. 28 7月, 2017 1 次提交
  8. 26 7月, 2017 1 次提交
  9. 25 7月, 2017 2 次提交
  10. 19 7月, 2017 1 次提交
    • F
      Simplify Tensor implimentation · 55d30172
      fengjiayi 提交于
      ATTENTION: some interfaces changed:
      1. void Tensor::set_dims(const DDim& dims) ==> void Tensor::Resize(const DDim& dims).
      2. void Tensor::ShareDataFrom(const Tensor& src)  ==> void Tensor::ShareDataWith(const Tensor& src)
      3. DDim Tensor::dims() const ==> const DDim& Tensor::dims() const
      55d30172
  11. 15 7月, 2017 4 次提交
  12. 14 7月, 2017 2 次提交
    • F
      fix several compile error · 1f97388a
      fengjiayi 提交于
      1f97388a
    • F
      Refactor Tensor::CopyFrom() · dcfcf687
      fengjiayi 提交于
      1. Add template T which indicates data type to `CopyFrom()`, `Slice()`
      and `ShareData()` functions. This makes `CopyData()` code much clearer.
      
      2. Add `set_dim()`.
      
      3. `product(DDim)` transforms `DDim` to `vector<int>` first and then calculate
      its product. That might be quite slow. For `product(dims_)` is frequently
      used in Tensor, we add a mumber variable `numel_` as a cache of the
      product result.
      TODO: refactor `product()` to make it more efficient.
      
      4. Unable Tensor::operator=
      
      5. Remove the limit of POD type, because `float16` and `int8` are not POD type.
      dcfcf687
  13. 12 7月, 2017 1 次提交
    • F
      Add Tensor::CopyFrom and Tensor::mutable_data(Place place) · 69d99d48
      fengjiayi 提交于
      1. Add `Tensor::CopyFrom`. Current version can only support CPU memory
      copy. The support of GPU will be provided later by `paddle::memory`.
      The current implementation of `Tensor::CopyFrom` is a little inefficient:
      Every time `CopyFrom` is called, tensor will re-allocate its memory. However, if
      we try to check and reuse `placeholder_`, we have to provide a template
      parameter for `CopyFrom` to indicate the data type. It seems strange for
      a simple copy function.
      
      2. Add `Tensor::mutable_data(Place place)`, which directly use member
      variable `dims_` as its dim parameter. This interface is required by
      `Op::InferShape`.
      69d99d48
  14. 11 7月, 2017 1 次提交
  15. 03 7月, 2017 3 次提交