- 20 11月, 2019 1 次提交
-
-
由 Thunderbrook 提交于
* general table * add sparse table test=develop * no cvm test=develop * add no_cvm test=develop * add note test=develop * code style test=develop * code style test=develop * code style test=develop * code style test=develop * code style test=develop * add key of optimizer test=develop
-
- 15 11月, 2019 1 次提交
-
-
由 xujiaqi01 提交于
* copy some feasigns and corresponding embeddings from one sparse table to another * copy all feasigns and corresponding embeddings from one sparse table to another * copy all dense params from one table to another * copy some local vars to other local vars
-
- 31 10月, 2019 1 次提交
-
-
由 Thunderbrook 提交于
* support dump param to afs test=develop * code style test=develop * code style test=develop * dump param test=develop * dump param test=develop * dump param test=develop * dump param test=develop
-
- 25 10月, 2019 1 次提交
-
-
由 xujiaqi01 提交于
* no longer need to define all embedding layers (no one less) of all slots in each program. make trainer_param repeated in ps.proto. * add find_distributed_lookup_table_grads instead of hard code GRAD * support embedding stop gradient. push sparse has error before fix this.* * fix fill sparse, skip slots which do not have embedding. each slot's embedding in a sparse table should be used in all training programs before fix this. * fix pull sparse, skip slots which do not have embedding. * fix collect feasign label info, skip slots which do not have embedding. * support when there are multi sparse tables in one or multi training programs, each program can pull/push its own related sparse tables instead of all sparse tables. * test=develop
-
- 18 10月, 2019 1 次提交
-
-
由 xujiaqi01 提交于
* add check nan / inf in downpour worker during training * test=develop
-
- 17 9月, 2019 1 次提交
-
-
由 Thunderbrook 提交于
* rm return in vfork * rm return in vfork test=develop
-
- 30 8月, 2019 1 次提交
-
-
由 yaoxuefeng 提交于
* add thread scope stat accurate metrics test=develop * fix style * fix style * fix style * fix style test=develop * fix style test=develop * fix style test=develop * fix style test=develop * fix style test=develop * fix style test=develop * fix style test=develop * fix conflict * fix style * fix style test=develop * fix error test=develop * fix error test=develop
-
- 29 8月, 2019 1 次提交
-
-
由 Thunderbrook 提交于
* dump slot * test * proto * dump slot * test * proto * code style * code style * code style * style * add delete after unseen days * add unseen days * code style * conflict solve test=develop * add clear model * code style test=develop * code style test=develop * support debug tensor of each ins test=develop * support debug tensor of each ins test=develop * learning rate * code style * code style * code style * code style * code style * code style * code style * code style * code style * code style * code style * code style * code style test=develop * code style test=develop * unitest * style * style * multi phase * add channel * code style * style * style * unitest * style * define * define test=develop * style test=develop * rm define test=develop * linux * linux test=develop * style test=develop * output format test=develop * windows ci test=develop
-
- 01 8月, 2019 1 次提交
-
-
由 jiaqi 提交于
adjust ins weight according to nid slot , user can specify adjust_ins_weight in strategy
-
- 25 7月, 2019 1 次提交
-
-
由 fuyinno4 提交于
Fix FleetWrapper: 1. fix shrink dense: just scale show 2. add datanorm scale: divide datanorm's gradient by batch_size
-
- 24 7月, 2019 1 次提交
-
-
由 Thunderbrook 提交于
The change includes 2 things: 1. save delta model and shrink table are control by the same parameter before, now add delete_after_unseen_days to control shrink table. 2. value in sparse table has no slot before, now add slot in sparse table, and add DownpureCtrAccessor to support the new meta. test=develop
-
- 23 7月, 2019 1 次提交
-
-
由 jiaqi 提交于
(1)support patch data (merge slots of instances of same line id, modify dense layer which changes its size) (2)add fleet load_one_table interface, support load from paddle model and load from pslib model (3)fix push sparse bug which cause push sparse cost more time(about 10% in my testcase) (4)when some slots are not in one of your network (join/update, etc.),data feed、collect label info、push/pull sparse will skip these slots, instead of throw error. (5)add more debug info in TrainFilesWithProfiler
-
- 15 5月, 2019 1 次提交
-
-
由 jiaqi 提交于
* add save/load model, shrink table, cvm, config file & fix pull dense bug test=develop * fix global shuffle bug, fix pull dense bug, fix release memeory bug, fix shrink error add client flush, add get data size test=develop * fix global shuffle bug test=develop * fix global shuffle bug test=develop * fix code style test=develop * fix code style & modify pslib cmake test=develop * fix error of _role_maker test=develop * fix code style test=develop * fix code style test=develop * fix code style test=develop * fix code style test=develop * fix code style test=develop * fix windows compile error of fleet test=develop * fix global shuffle bug * add comment test=develop * update pslib.cmake test=develop * fix fill sparse bug test=develop * fix push sparse bug test=develop
-
- 09 5月, 2019 1 次提交
-
-
由 guru4elephant 提交于
* fix train_from_dataset and infer_from_dataset example * add inductive dim for data_reader, example: shape=[-1, 1], then -1 will be inducted through run-time reading of number of elements
-
- 11 4月, 2019 1 次提交
-
-
由 dongdaxiang 提交于
test=develop
-
- 29 3月, 2019 18 次提交
-
-
由 dongdaxiang 提交于
test=develop
-
由 xjqbest 提交于
test=develop
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
add data_generator into paddle.fluid.incubate.data_generator, add op run log in hogwild_device_worker and downpour_device_worker test=develop
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 heqiaozhi 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
add dist_multi_trainer for distributed training, add trainer_factory and device_worker_factory so that we can easily extend new training mode, add pull dense worker which is a singleton for parameter fetching
-