未验证 提交 fdd069f8 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference]Add stack op TRT converter unittest (#35531)

* add_stack_teller

* add_stack_teller

* add_stack_teller

* add_stack_teller
上级 39bc7eab
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertStackTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
outputs = program_config.outputs
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
#The input dimension should be less than the set axis.
if len(inputs['stack_input1'].shape) < attrs[0]['axis']:
return False
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)
def generate_input2(attrs: List[Dict[str, Any]], batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)
def generate_input3(attrs: List[Dict[str, Any]], batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)
for dims in [1, 2, 3, 4]:
for batch in [1, 2, 4]:
for axis in [-2, -1, 0, 1, 2, 3]:
self.dims = dims
dics = [{"axis": axis}, {}]
ops_config = [{
"op_type": "stack",
"op_inputs": {
"X":
["stack_input1", "stack_input2", "stack_input3"]
},
"op_outputs": {
"Y": ["stack_output"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"stack_input1": TensorConfig(data_gen=partial(
generate_input1, dics, batch)),
"stack_input2": TensorConfig(data_gen=partial(
generate_input2, dics, batch)),
"stack_input3": TensorConfig(data_gen=partial(
generate_input3, dics, batch))
},
outputs=["stack_output"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"stack_input1": [1, 3, 24, 24],
"stack_input2": [1, 3, 24, 24],
"stack_input3": [1, 3, 24, 24]
}
self.dynamic_shape.max_input_shape = {
"stack_input1": [4, 3, 48, 48],
"stack_input2": [4, 3, 48, 48],
"stack_input3": [4, 3, 48, 48]
}
self.dynamic_shape.opt_input_shape = {
"stack_input1": [1, 3, 24, 24],
"stack_input2": [1, 3, 24, 24],
"stack_input3": [1, 3, 24, 24]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"stack_input1": [1, 3, 24],
"stack_input2": [1, 3, 24],
"stack_input3": [1, 3, 24]
}
self.dynamic_shape.max_input_shape = {
"stack_input1": [4, 3, 48],
"stack_input2": [4, 3, 48],
"stack_input3": [4, 3, 48]
}
self.dynamic_shape.opt_input_shape = {
"stack_input1": [1, 3, 24],
"stack_input2": [1, 3, 24],
"stack_input3": [1, 3, 24]
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"stack_input1": [1, 24],
"stack_input2": [1, 24],
"stack_input3": [1, 24]
}
self.dynamic_shape.max_input_shape = {
"stack_input1": [4, 48],
"stack_input2": [4, 48],
"stack_input3": [4, 48]
}
self.dynamic_shape.opt_input_shape = {
"stack_input1": [1, 24],
"stack_input2": [1, 24],
"stack_input3": [1, 24]
}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {
"stack_input1": [24],
"stack_input2": [24],
"stack_input3": [24]
}
self.dynamic_shape.max_input_shape = {
"stack_input1": [48],
"stack_input2": [48],
"stack_input3": [48]
}
self.dynamic_shape.opt_input_shape = {
"stack_input1": [24],
"stack_input2": [24],
"stack_input3": [24]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if dynamic_shape == True:
return 1, 4
else:
return 0, 5
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
def add_skip_trt_case(self):
pass
def test(self):
self.add_skip_trt_case()
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册