Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
fd5c7700
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fd5c7700
编写于
2月 07, 2017
作者:
Z
zhuoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
light version of cnn for MNIST
上级
299e959a
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
71 addition
and
0 deletion
+71
-0
demo/mnist/light_mnist.py
demo/mnist/light_mnist.py
+71
-0
未找到文件。
demo/mnist/light_mnist.py
0 → 100644
浏览文件 @
fd5c7700
from
paddle.trainer_config_helpers
import
*
is_predict
=
get_config_arg
(
"is_predict"
,
bool
,
False
)
####################Data Configuration ##################
if
not
is_predict
:
data_dir
=
'./data/'
define_py_data_sources2
(
train_list
=
data_dir
+
'train.list'
,
test_list
=
data_dir
+
'test.list'
,
module
=
'mnist_provider'
,
obj
=
'process'
)
######################Algorithm Configuration #############
# settings(
# batch_size=128,
# learning_rate=0.1 / 128.0,
# learning_method=MomentumOptimizer(0.9),
# regularization=L2Regularization(0.0005 * 128))
settings
(
batch_size
=
50
,
learning_rate
=
0.001
,
learning_method
=
AdamOptimizer
())
#######################Network Configuration #############
data_size
=
1
*
28
*
28
label_size
=
10
img
=
data_layer
(
name
=
'pixel'
,
size
=
data_size
)
# small_vgg is predined in trainer_config_helpers.network
# predict = small_vgg(input_image=img, num_channels=1, num_classes=label_size)
# light cnn
def
light_cnn
(
input_image
,
num_channels
,
num_classes
):
def
__light__
(
ipt
,
num_filter
=
128
,
times
=
1
,
conv_filter_size
=
3
,
dropouts
=
0
,
num_channels_
=
None
):
return
img_conv_group
(
input
=
ipt
,
num_channels
=
num_channels_
,
pool_size
=
2
,
pool_stride
=
2
,
conv_padding
=
0
,
conv_num_filter
=
[
num_filter
]
*
times
,
conv_filter_size
=
conv_filter_size
,
conv_act
=
ReluActivation
(),
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
MaxPooling
())
tmp
=
__light__
(
input_image
,
num_filter
=
128
,
num_channels_
=
num_channels
)
tmp
=
__light__
(
tmp
,
num_filter
=
128
)
tmp
=
__light__
(
tmp
,
num_filter
=
128
)
tmp
=
__light__
(
tmp
,
num_filter
=
128
,
conv_filter_size
=
1
)
#tmp = img_pool_layer(input=tmp, stride=2, pool_size=2, pool_type=MaxPooling())
#tmp = dropout_layer(input=tmp, dropout_rate=0.5)
tmp
=
fc_layer
(
input
=
tmp
,
size
=
num_classes
,
act
=
SoftmaxActivation
())
# tmp = fc_layer(input=tmp, size=512, layer_attr=ExtraAttr(drop_rate=0.5), act=LinearActivation())
# tmp = batch_norm_layer(input=tmp, act=ReluActivation())
# return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())
return
tmp
predict
=
light_cnn
(
input_image
=
img
,
num_channels
=
1
,
num_classes
=
label_size
)
if
not
is_predict
:
lbl
=
data_layer
(
name
=
"label"
,
size
=
label_size
)
inputs
(
img
,
lbl
)
outputs
(
classification_cost
(
input
=
predict
,
label
=
lbl
))
else
:
outputs
(
predict
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录