diff --git a/demo/mnist/light_mnist.py b/demo/mnist/light_mnist.py new file mode 100644 index 0000000000000000000000000000000000000000..271f73cd4d155f7c4c17eaf20de5c4ceef7905a7 --- /dev/null +++ b/demo/mnist/light_mnist.py @@ -0,0 +1,71 @@ +from paddle.trainer_config_helpers import * + +is_predict = get_config_arg("is_predict", bool, False) + +####################Data Configuration ################## + +if not is_predict: + data_dir = './data/' + define_py_data_sources2( + train_list=data_dir + 'train.list', + test_list=data_dir + 'test.list', + module='mnist_provider', + obj='process') + +######################Algorithm Configuration ############# +# settings( +# batch_size=128, +# learning_rate=0.1 / 128.0, +# learning_method=MomentumOptimizer(0.9), +# regularization=L2Regularization(0.0005 * 128)) +settings( + batch_size=50, + learning_rate=0.001, + learning_method=AdamOptimizer()) + +#######################Network Configuration ############# + +data_size = 1 * 28 * 28 +label_size = 10 +img = data_layer(name='pixel', size=data_size) + +# small_vgg is predined in trainer_config_helpers.network +# predict = small_vgg(input_image=img, num_channels=1, num_classes=label_size) + +# light cnn +def light_cnn(input_image, num_channels, num_classes): + def __light__(ipt, num_filter=128, times=1, conv_filter_size=3, dropouts=0, num_channels_=None): + return img_conv_group( + input=ipt, + num_channels=num_channels_, + pool_size=2, + pool_stride=2, + conv_padding=0, + conv_num_filter=[num_filter] * times, + conv_filter_size=conv_filter_size, + conv_act=ReluActivation(), + conv_with_batchnorm=True, + conv_batchnorm_drop_rate=dropouts, + pool_type=MaxPooling()) + + tmp = __light__(input_image, num_filter=128, num_channels_=num_channels) + tmp = __light__(tmp, num_filter=128) + tmp = __light__(tmp, num_filter=128) + tmp = __light__(tmp, num_filter=128, conv_filter_size=1) + + #tmp = img_pool_layer(input=tmp, stride=2, pool_size=2, pool_type=MaxPooling()) + #tmp = dropout_layer(input=tmp, dropout_rate=0.5) + tmp = fc_layer(input=tmp, size = num_classes, act=SoftmaxActivation()) + # tmp = fc_layer(input=tmp, size=512, layer_attr=ExtraAttr(drop_rate=0.5), act=LinearActivation()) + # tmp = batch_norm_layer(input=tmp, act=ReluActivation()) + # return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation()) + return tmp + +predict = light_cnn(input_image=img, num_channels=1, num_classes=label_size) + +if not is_predict: + lbl = data_layer(name="label", size=label_size) + inputs(img, lbl) + outputs(classification_cost(input=predict, label=lbl)) +else: + outputs(predict)