Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
fcd4cf7b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fcd4cf7b
编写于
7月 02, 2020
作者:
Y
Yang Zhang
提交者:
GitHub
7月 02, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add `matrix_nms_op` (#25333)
test=release/1.8
上级
d171f373
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
825 addition
and
0 deletion
+825
-0
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+1
-0
paddle/fluid/operators/detection/matrix_nms_op.cc
paddle/fluid/operators/detection/matrix_nms_op.cc
+389
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+128
-0
python/paddle/fluid/tests/unittests/test_matrix_nms_op.py
python/paddle/fluid/tests/unittests/test_matrix_nms_op.py
+307
-0
未找到文件。
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
fcd4cf7b
...
...
@@ -32,6 +32,7 @@ detection_library(rpn_target_assign_op SRCS rpn_target_assign_op.cc)
detection_library
(
generate_proposal_labels_op SRCS generate_proposal_labels_op.cc
)
detection_library
(
multiclass_nms_op SRCS multiclass_nms_op.cc DEPS gpc
)
detection_library
(
locality_aware_nms_op SRCS locality_aware_nms_op.cc DEPS gpc
)
detection_library
(
matrix_nms_op SRCS matrix_nms_op.cc DEPS gpc
)
detection_library
(
box_clip_op SRCS box_clip_op.cc box_clip_op.cu
)
detection_library
(
yolov3_loss_op SRCS yolov3_loss_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc yolo_box_op.cu
)
...
...
paddle/fluid/operators/detection/matrix_nms_op.cc
0 → 100644
浏览文件 @
fcd4cf7b
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/nms_util.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
class
MatrixNMSOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"BBoxes"
),
"Input"
,
"BBoxes"
,
"MatrixNMS"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Scores"
),
"Input"
,
"Scores"
,
"MatrixNMS"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"MatrixNMS"
);
auto
box_dims
=
ctx
->
GetInputDim
(
"BBoxes"
);
auto
score_dims
=
ctx
->
GetInputDim
(
"Scores"
);
auto
score_size
=
score_dims
.
size
();
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
score_size
==
3
,
true
,
platform
::
errors
::
InvalidArgument
(
"The rank of Input(Scores) must be 3. "
"But received rank = %d."
,
score_size
));
PADDLE_ENFORCE_EQ
(
box_dims
.
size
(),
3
,
platform
::
errors
::
InvalidArgument
(
"The rank of Input(BBoxes) must be 3."
"But received rank = %d."
,
box_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
box_dims
[
2
]
==
4
,
true
,
platform
::
errors
::
InvalidArgument
(
"The last dimension of Input (BBoxes) must be 4, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax]."
));
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
score_dims
[
2
],
platform
::
errors
::
InvalidArgument
(
"The 2nd dimension of Input(BBoxes) must be equal to "
"last dimension of Input(Scores), which represents the "
"predicted bboxes."
"But received box_dims[1](%s) != socre_dims[2](%s)"
,
box_dims
[
1
],
score_dims
[
2
]));
}
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
1
],
box_dims
[
2
]
+
2
});
ctx
->
SetOutputDim
(
"Index"
,
{
box_dims
[
1
],
1
});
if
(
!
ctx
->
IsRuntime
())
{
ctx
->
SetLoDLevel
(
"Out"
,
std
::
max
(
ctx
->
GetLoDLevel
(
"BBoxes"
),
1
));
ctx
->
SetLoDLevel
(
"Index"
,
std
::
max
(
ctx
->
GetLoDLevel
(
"BBoxes"
),
1
));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"Scores"
),
platform
::
CPUPlace
());
}
};
template
<
typename
T
,
bool
gaussian
>
struct
decay_score
;
template
<
typename
T
>
struct
decay_score
<
T
,
true
>
{
T
operator
()(
T
iou
,
T
max_iou
,
T
sigma
)
{
return
std
::
exp
((
max_iou
*
max_iou
-
iou
*
iou
)
*
sigma
);
}
};
template
<
typename
T
>
struct
decay_score
<
T
,
false
>
{
T
operator
()(
T
iou
,
T
max_iou
,
T
sigma
)
{
return
(
1.
-
iou
)
/
(
1.
-
max_iou
);
}
};
template
<
typename
T
,
bool
gaussian
>
void
NMSMatrix
(
const
Tensor
&
bbox
,
const
Tensor
&
scores
,
const
T
score_threshold
,
const
T
post_threshold
,
const
float
sigma
,
const
int64_t
top_k
,
const
bool
normalized
,
std
::
vector
<
int
>*
selected_indices
,
std
::
vector
<
T
>*
decayed_scores
)
{
int64_t
num_boxes
=
bbox
.
dims
()[
0
];
int64_t
box_size
=
bbox
.
dims
()[
1
];
auto
score_ptr
=
scores
.
data
<
T
>
();
auto
bbox_ptr
=
bbox
.
data
<
T
>
();
std
::
vector
<
int32_t
>
perm
(
num_boxes
);
std
::
iota
(
perm
.
begin
(),
perm
.
end
(),
0
);
auto
end
=
std
::
remove_if
(
perm
.
begin
(),
perm
.
end
(),
[
&
score_ptr
,
score_threshold
](
int32_t
idx
)
{
return
score_ptr
[
idx
]
<=
score_threshold
;
});
auto
sort_fn
=
[
&
score_ptr
](
int32_t
lhs
,
int32_t
rhs
)
{
return
score_ptr
[
lhs
]
>
score_ptr
[
rhs
];
};
int64_t
num_pre
=
std
::
distance
(
perm
.
begin
(),
end
);
if
(
num_pre
<=
0
)
{
return
;
}
if
(
top_k
>
-
1
&&
num_pre
>
top_k
)
{
num_pre
=
top_k
;
}
std
::
partial_sort
(
perm
.
begin
(),
perm
.
begin
()
+
num_pre
,
end
,
sort_fn
);
std
::
vector
<
T
>
iou_matrix
((
num_pre
*
(
num_pre
-
1
))
>>
1
);
std
::
vector
<
T
>
iou_max
(
num_pre
);
iou_max
[
0
]
=
0.
;
for
(
int64_t
i
=
1
;
i
<
num_pre
;
i
++
)
{
T
max_iou
=
0.
;
auto
idx_a
=
perm
[
i
];
for
(
int64_t
j
=
0
;
j
<
i
;
j
++
)
{
auto
idx_b
=
perm
[
j
];
auto
iou
=
JaccardOverlap
<
T
>
(
bbox_ptr
+
idx_a
*
box_size
,
bbox_ptr
+
idx_b
*
box_size
,
normalized
);
max_iou
=
std
::
max
(
max_iou
,
iou
);
iou_matrix
[
i
*
(
i
-
1
)
/
2
+
j
]
=
iou
;
}
iou_max
[
i
]
=
max_iou
;
}
if
(
score_ptr
[
perm
[
0
]]
>
post_threshold
)
{
selected_indices
->
push_back
(
perm
[
0
]);
decayed_scores
->
push_back
(
score_ptr
[
perm
[
0
]]);
}
decay_score
<
T
,
gaussian
>
decay_fn
;
for
(
int64_t
i
=
1
;
i
<
num_pre
;
i
++
)
{
T
min_decay
=
1.
;
for
(
int64_t
j
=
0
;
j
<
i
;
j
++
)
{
auto
max_iou
=
iou_max
[
j
];
auto
iou
=
iou_matrix
[
i
*
(
i
-
1
)
/
2
+
j
];
auto
decay
=
decay_fn
(
iou
,
max_iou
,
sigma
);
min_decay
=
std
::
min
(
min_decay
,
decay
);
}
auto
ds
=
min_decay
*
score_ptr
[
perm
[
i
]];
if
(
ds
<=
post_threshold
)
continue
;
selected_indices
->
push_back
(
perm
[
i
]);
decayed_scores
->
push_back
(
ds
);
}
}
template
<
typename
T
>
class
MatrixNMSKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
size_t
MultiClassMatrixNMS
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
std
::
vector
<
T
>*
out
,
std
::
vector
<
int
>*
indices
,
int
start
,
int64_t
background_label
,
int64_t
nms_top_k
,
int64_t
keep_top_k
,
bool
normalized
,
T
score_threshold
,
T
post_threshold
,
bool
use_gaussian
,
float
gaussian_sigma
)
const
{
std
::
vector
<
int
>
all_indices
;
std
::
vector
<
T
>
all_scores
;
std
::
vector
<
T
>
all_classes
;
all_indices
.
reserve
(
scores
.
numel
());
all_scores
.
reserve
(
scores
.
numel
());
all_classes
.
reserve
(
scores
.
numel
());
size_t
num_det
=
0
;
auto
class_num
=
scores
.
dims
()[
0
];
Tensor
score_slice
;
for
(
int64_t
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
c
==
background_label
)
continue
;
score_slice
=
scores
.
Slice
(
c
,
c
+
1
);
if
(
use_gaussian
)
{
NMSMatrix
<
T
,
true
>
(
bboxes
,
score_slice
,
score_threshold
,
post_threshold
,
gaussian_sigma
,
nms_top_k
,
normalized
,
&
all_indices
,
&
all_scores
);
}
else
{
NMSMatrix
<
T
,
false
>
(
bboxes
,
score_slice
,
score_threshold
,
post_threshold
,
gaussian_sigma
,
nms_top_k
,
normalized
,
&
all_indices
,
&
all_scores
);
}
for
(
size_t
i
=
0
;
i
<
all_indices
.
size
()
-
num_det
;
i
++
)
{
all_classes
.
push_back
(
static_cast
<
T
>
(
c
));
}
num_det
=
all_indices
.
size
();
}
if
(
num_det
<=
0
)
{
return
num_det
;
}
if
(
keep_top_k
>
-
1
)
{
auto
k
=
static_cast
<
size_t
>
(
keep_top_k
);
if
(
num_det
>
k
)
num_det
=
k
;
}
std
::
vector
<
int32_t
>
perm
(
all_indices
.
size
());
std
::
iota
(
perm
.
begin
(),
perm
.
end
(),
0
);
std
::
partial_sort
(
perm
.
begin
(),
perm
.
begin
()
+
num_det
,
perm
.
end
(),
[
&
all_scores
](
int
lhs
,
int
rhs
)
{
return
all_scores
[
lhs
]
>
all_scores
[
rhs
];
});
for
(
size_t
i
=
0
;
i
<
num_det
;
i
++
)
{
auto
p
=
perm
[
i
];
auto
idx
=
all_indices
[
p
];
auto
cls
=
all_classes
[
p
];
auto
score
=
all_scores
[
p
];
auto
bbox
=
bboxes
.
data
<
T
>
()
+
idx
*
bboxes
.
dims
()[
1
];
(
*
indices
).
push_back
(
start
+
idx
);
(
*
out
).
push_back
(
cls
);
(
*
out
).
push_back
(
score
);
for
(
int
j
=
0
;
j
<
bboxes
.
dims
()[
1
];
j
++
)
{
(
*
out
).
push_back
(
bbox
[
j
]);
}
}
return
num_det
;
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
boxes
=
ctx
.
Input
<
LoDTensor
>
(
"BBoxes"
);
auto
*
scores
=
ctx
.
Input
<
LoDTensor
>
(
"Scores"
);
auto
*
outs
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
auto
*
index
=
ctx
.
Output
<
LoDTensor
>
(
"Index"
);
auto
background_label
=
ctx
.
Attr
<
int
>
(
"background_label"
);
auto
nms_top_k
=
ctx
.
Attr
<
int
>
(
"nms_top_k"
);
auto
keep_top_k
=
ctx
.
Attr
<
int
>
(
"keep_top_k"
);
auto
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
auto
score_threshold
=
ctx
.
Attr
<
float
>
(
"score_threshold"
);
auto
post_threshold
=
ctx
.
Attr
<
float
>
(
"post_threshold"
);
auto
use_gaussian
=
ctx
.
Attr
<
bool
>
(
"use_gaussian"
);
auto
gaussian_sigma
=
ctx
.
Attr
<
float
>
(
"gaussian_sigma"
);
auto
score_dims
=
scores
->
dims
();
auto
batch_size
=
score_dims
[
0
];
auto
num_boxes
=
score_dims
[
2
];
auto
box_dim
=
boxes
->
dims
()[
2
];
auto
out_dim
=
box_dim
+
2
;
Tensor
boxes_slice
,
scores_slice
;
size_t
num_out
=
0
;
std
::
vector
<
size_t
>
offsets
=
{
0
};
std
::
vector
<
T
>
detections
;
std
::
vector
<
int
>
indices
;
detections
.
reserve
(
out_dim
*
num_boxes
*
batch_size
);
indices
.
reserve
(
num_boxes
*
batch_size
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
scores_slice
=
scores
->
Slice
(
i
,
i
+
1
);
scores_slice
.
Resize
({
score_dims
[
1
],
score_dims
[
2
]});
boxes_slice
=
boxes
->
Slice
(
i
,
i
+
1
);
boxes_slice
.
Resize
({
score_dims
[
2
],
box_dim
});
int
start
=
i
*
score_dims
[
2
];
num_out
=
MultiClassMatrixNMS
(
scores_slice
,
boxes_slice
,
&
detections
,
&
indices
,
start
,
background_label
,
nms_top_k
,
keep_top_k
,
normalized
,
score_threshold
,
post_threshold
,
use_gaussian
,
gaussian_sigma
);
offsets
.
push_back
(
offsets
.
back
()
+
num_out
);
}
int64_t
num_kept
=
offsets
.
back
();
if
(
num_kept
==
0
)
{
outs
->
mutable_data
<
T
>
({
0
,
out_dim
},
ctx
.
GetPlace
());
index
->
mutable_data
<
int
>
({
0
,
1
},
ctx
.
GetPlace
());
}
else
{
outs
->
mutable_data
<
T
>
({
num_kept
,
out_dim
},
ctx
.
GetPlace
());
index
->
mutable_data
<
int
>
({
num_kept
,
1
},
ctx
.
GetPlace
());
std
::
copy
(
detections
.
begin
(),
detections
.
end
(),
outs
->
data
<
T
>
());
std
::
copy
(
indices
.
begin
(),
indices
.
end
(),
index
->
data
<
int
>
());
}
framework
::
LoD
lod
;
lod
.
emplace_back
(
offsets
);
outs
->
set_lod
(
lod
);
index
->
set_lod
(
lod
);
}
};
class
MatrixNMSOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"BBoxes"
,
"(Tensor) A 3-D Tensor with shape "
"[N, M, 4] represents the predicted locations of M bounding boxes"
", N is the batch size. "
"Each bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax], when box size equals to 4."
);
AddInput
(
"Scores"
,
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the "
"class number, M is number of bounding boxes. For each category "
"there are total M scores which corresponding M bounding boxes. "
" Please note, M is equal to the 2nd dimension of BBoxes. "
);
AddAttr
<
int
>
(
"background_label"
,
"(int, default: 0) "
"The index of background label, the background label will be ignored. "
"If set to -1, then all categories will be considered."
)
.
SetDefault
(
0
);
AddAttr
<
float
>
(
"score_threshold"
,
"(float) "
"Threshold to filter out bounding boxes with low "
"confidence score."
);
AddAttr
<
float
>
(
"post_threshold"
,
"(float, default 0.) "
"Threshold to filter out bounding boxes with low "
"confidence score AFTER decaying."
)
.
SetDefault
(
0.
);
AddAttr
<
int
>
(
"nms_top_k"
,
"(int64_t) "
"Maximum number of detections to be kept according to the "
"confidences after the filtering detections based on "
"score_threshold"
);
AddAttr
<
int
>
(
"keep_top_k"
,
"(int64_t) "
"Number of total bboxes to be kept per image after NMS "
"step. -1 means keeping all bboxes after NMS step."
);
AddAttr
<
bool
>
(
"normalized"
,
"(bool, default true) "
"Whether detections are normalized."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"use_gaussian"
,
"(bool, default false) "
"Whether to use Gaussian as decreasing function."
)
.
SetDefault
(
false
);
AddAttr
<
float
>
(
"gaussian_sigma"
,
"(float) "
"Sigma for Gaussian decreasing function, only takes effect "
,
"when 'use_gaussian' is enabled."
)
.
SetDefault
(
2.
);
AddOutput
(
"Out"
,
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: "
"[label, confidence, xmin, ymin, xmax, ymax]. "
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected bbox."
);
AddOutput
(
"Index"
,
"(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
"index of selected bbox. The index is the absolute index cross "
"batches."
);
AddComment
(
R"DOC(
This operator does multi-class matrix non maximum suppression (NMS) on batched
boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator decays boxes score according to the
Matrix NMS scheme.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image.
For more information on Matrix NMS, please refer to:
https://arxiv.org/abs/2003.10152
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
matrix_nms
,
ops
::
MatrixNMSOp
,
ops
::
MatrixNMSOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
matrix_nms
,
ops
::
MatrixNMSKernel
<
float
>
,
ops
::
MatrixNMSKernel
<
double
>
);
python/paddle/fluid/layers/detection.py
浏览文件 @
fcd4cf7b
...
...
@@ -57,6 +57,7 @@ __all__ = [
'box_clip'
,
'multiclass_nms'
,
'locality_aware_nms'
,
'matrix_nms'
,
'retinanet_detection_output'
,
'distribute_fpn_proposals'
,
'box_decoder_and_assign'
,
...
...
@@ -3387,6 +3388,133 @@ def locality_aware_nms(bboxes,
return
output
def
matrix_nms
(
bboxes
,
scores
,
score_threshold
,
post_threshold
,
nms_top_k
,
keep_top_k
,
use_gaussian
=
False
,
gaussian_sigma
=
2.
,
background_label
=
0
,
normalized
=
True
,
return_index
=
False
,
name
=
None
):
"""
**Matrix NMS**
This operator does matrix non maximum suppression (NMS).
First selects a subset of candidate bounding boxes that have higher scores
than score_threshold (if provided), then the top k candidate is selected if
nms_top_k is larger than -1. Score of the remaining candidate are then
decayed according to the Matrix NMS scheme.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Variable): A 3-D Tensor with shape [N, M, 4] represents the
predicted locations of M bounding bboxes,
N is the batch size. Each bounding box has four
coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
The data type is float32 or float64.
scores (Variable): A 3-D Tensor with shape [N, C, M]
represents the predicted confidence predictions.
N is the batch size, C is the class number, M is
number of bounding boxes. For each category there
are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension
of BBoxes. The data type is float32 or float64.
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score.
post_threshold (float): Threshold to filter out bounding boxes with
low confidence score AFTER decaying.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences after the filtering detections based
on score_threshold.
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
use_gaussian (bool): Use Gaussian as the decay function. Default: False
gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: 0
normalized (bool): Whether detections are normalized. Default: True
return_index(bool): Whether return selected index. Default: False
name(str): Name of the matrix nms op. Default: None.
Returns:
A tuple with two Variables: (Out, Index) if return_index is True,
otherwise, one Variable(Out) is returned.
Out (Variable): A 2-D LoDTensor with shape [No, 6] containing the
detection results.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
(After version 1.3, when no boxes detected, the lod is changed
from {0} to {1})
Index (Variable): A 2-D LoDTensor with shape [No, 1] containing the
selected indices, which are absolute values cross batches.
Examples:
.. code-block:: python
import paddle.fluid as fluid
boxes = fluid.data(name='bboxes', shape=[None,81, 4],
dtype='float32', lod_level=1)
scores = fluid.data(name='scores', shape=[None,81],
dtype='float32', lod_level=1)
out = fluid.layers.matrix_nms(bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
post_threshold=0.1,
nms_top_k=400,
keep_top_k=200,
normalized=False)
"""
check_variable_and_dtype
(
bboxes
,
'BBoxes'
,
[
'float32'
,
'float64'
],
'matrix_nms'
)
check_variable_and_dtype
(
scores
,
'Scores'
,
[
'float32'
,
'float64'
],
'matrix_nms'
)
check_type
(
score_threshold
,
'score_threshold'
,
float
,
'matrix_nms'
)
check_type
(
post_threshold
,
'post_threshold'
,
float
,
'matrix_nms'
)
check_type
(
nms_top_k
,
'nums_top_k'
,
int
,
'matrix_nms'
)
check_type
(
keep_top_k
,
'keep_top_k'
,
int
,
'matrix_nms'
)
check_type
(
normalized
,
'normalized'
,
bool
,
'matrix_nms'
)
check_type
(
use_gaussian
,
'use_gaussian'
,
bool
,
'matrix_nms'
)
check_type
(
gaussian_sigma
,
'gaussian_sigma'
,
float
,
'matrix_nms'
)
check_type
(
background_label
,
'background_label'
,
int
,
'matrix_nms'
)
helper
=
LayerHelper
(
'matrix_nms'
,
**
locals
())
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
bboxes
.
dtype
)
index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int'
)
helper
.
append_op
(
type
=
"matrix_nms"
,
inputs
=
{
'BBoxes'
:
bboxes
,
'Scores'
:
scores
},
attrs
=
{
'background_label'
:
background_label
,
'score_threshold'
:
score_threshold
,
'post_threshold'
:
post_threshold
,
'nms_top_k'
:
nms_top_k
,
'gaussian_sigma'
:
gaussian_sigma
,
'use_gaussian'
:
use_gaussian
,
'keep_top_k'
:
keep_top_k
,
'normalized'
:
normalized
},
outputs
=
{
'Out'
:
output
,
'Index'
:
index
})
output
.
stop_gradient
=
True
if
return_index
:
return
output
,
index
else
:
return
output
def
distribute_fpn_proposals
(
fpn_rois
,
min_level
,
max_level
,
...
...
python/paddle/fluid/tests/unittests/test_matrix_nms_op.py
0 → 100644
浏览文件 @
fcd4cf7b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
copy
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
def
softmax
(
x
):
# clip to shiftx, otherwise, when calc loss with
# log(exp(shiftx)), may get log(0)=INF
shiftx
=
(
x
-
np
.
max
(
x
)).
clip
(
-
64.
)
exps
=
np
.
exp
(
shiftx
)
return
exps
/
np
.
sum
(
exps
)
def
iou_matrix
(
a
,
b
,
norm
=
True
):
tl_i
=
np
.
maximum
(
a
[:,
np
.
newaxis
,
:
2
],
b
[:,
:
2
])
br_i
=
np
.
minimum
(
a
[:,
np
.
newaxis
,
2
:],
b
[:,
2
:])
pad
=
not
norm
and
1
or
0
area_i
=
np
.
prod
(
br_i
-
tl_i
+
pad
,
axis
=
2
)
*
(
tl_i
<
br_i
).
all
(
axis
=
2
)
area_a
=
np
.
prod
(
a
[:,
2
:]
-
a
[:,
:
2
]
+
pad
,
axis
=
1
)
area_b
=
np
.
prod
(
b
[:,
2
:]
-
b
[:,
:
2
]
+
pad
,
axis
=
1
)
area_o
=
(
area_a
[:,
np
.
newaxis
]
+
area_b
-
area_i
)
return
area_i
/
(
area_o
+
1e-10
)
def
matrix_nms
(
boxes
,
scores
,
score_threshold
,
post_threshold
=
0.
,
nms_top_k
=
400
,
normalized
=
True
,
use_gaussian
=
False
,
gaussian_sigma
=
2.
):
all_scores
=
copy
.
deepcopy
(
scores
)
all_scores
=
all_scores
.
flatten
()
selected_indices
=
np
.
where
(
all_scores
>
score_threshold
)[
0
]
all_scores
=
all_scores
[
selected_indices
]
sorted_indices
=
np
.
argsort
(
-
all_scores
,
axis
=
0
,
kind
=
'mergesort'
)
sorted_scores
=
all_scores
[
sorted_indices
]
sorted_indices
=
selected_indices
[
sorted_indices
]
if
nms_top_k
>
-
1
and
nms_top_k
<
sorted_indices
.
shape
[
0
]:
sorted_indices
=
sorted_indices
[:
nms_top_k
]
sorted_scores
=
sorted_scores
[:
nms_top_k
]
selected_boxes
=
boxes
[
sorted_indices
,
:]
ious
=
iou_matrix
(
selected_boxes
,
selected_boxes
)
ious
=
np
.
triu
(
ious
,
k
=
1
)
iou_cmax
=
ious
.
max
(
0
)
N
=
iou_cmax
.
shape
[
0
]
iou_cmax
=
np
.
repeat
(
iou_cmax
[:,
np
.
newaxis
],
N
,
axis
=
1
)
if
use_gaussian
:
decay
=
np
.
exp
((
iou_cmax
**
2
-
ious
**
2
)
*
gaussian_sigma
)
else
:
decay
=
(
1
-
ious
)
/
(
1
-
iou_cmax
)
decay
=
decay
.
min
(
0
)
decayed_scores
=
sorted_scores
*
decay
if
post_threshold
>
0.
:
inds
=
np
.
where
(
decayed_scores
>
post_threshold
)[
0
]
selected_boxes
=
selected_boxes
[
inds
,
:]
decayed_scores
=
decayed_scores
[
inds
]
sorted_indices
=
sorted_indices
[
inds
]
return
decayed_scores
,
selected_boxes
,
sorted_indices
def
multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
post_threshold
,
nms_top_k
,
keep_top_k
,
normalized
,
use_gaussian
,
gaussian_sigma
):
all_boxes
=
[]
all_cls
=
[]
all_scores
=
[]
all_indices
=
[]
for
c
in
range
(
scores
.
shape
[
0
]):
if
c
==
background
:
continue
decayed_scores
,
selected_boxes
,
indices
=
matrix_nms
(
boxes
,
scores
[
c
],
score_threshold
,
post_threshold
,
nms_top_k
,
normalized
,
use_gaussian
,
gaussian_sigma
)
all_cls
.
append
(
np
.
full
(
len
(
decayed_scores
),
c
,
decayed_scores
.
dtype
))
all_boxes
.
append
(
selected_boxes
)
all_scores
.
append
(
decayed_scores
)
all_indices
.
append
(
indices
)
all_cls
=
np
.
concatenate
(
all_cls
)
all_boxes
=
np
.
concatenate
(
all_boxes
)
all_scores
=
np
.
concatenate
(
all_scores
)
all_indices
=
np
.
concatenate
(
all_indices
)
all_pred
=
np
.
concatenate
(
(
all_cls
[:,
np
.
newaxis
],
all_scores
[:,
np
.
newaxis
],
all_boxes
),
axis
=
1
)
num_det
=
len
(
all_pred
)
if
num_det
==
0
:
return
all_pred
,
np
.
array
([],
dtype
=
np
.
float32
)
inds
=
np
.
argsort
(
-
all_scores
,
axis
=
0
,
kind
=
'mergesort'
)
all_pred
=
all_pred
[
inds
,
:]
all_indices
=
all_indices
[
inds
]
if
keep_top_k
>
-
1
and
num_det
>
keep_top_k
:
num_det
=
keep_top_k
all_pred
=
all_pred
[:
keep_top_k
,
:]
all_indices
=
all_indices
[:
keep_top_k
]
return
all_pred
,
all_indices
def
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
post_threshold
,
nms_top_k
,
keep_top_k
,
normalized
=
True
,
use_gaussian
=
False
,
gaussian_sigma
=
2.
):
batch_size
=
scores
.
shape
[
0
]
det_outs
=
[]
index_outs
=
[]
lod
=
[]
for
n
in
range
(
batch_size
):
nmsed_outs
,
indices
=
multiclass_nms
(
boxes
[
n
],
scores
[
n
],
background
,
score_threshold
,
post_threshold
,
nms_top_k
,
keep_top_k
,
normalized
,
use_gaussian
,
gaussian_sigma
)
nmsed_num
=
len
(
nmsed_outs
)
lod
.
append
(
nmsed_num
)
if
nmsed_num
==
0
:
continue
indices
+=
n
*
scores
.
shape
[
2
]
det_outs
.
append
(
nmsed_outs
)
index_outs
.
append
(
indices
)
if
det_outs
:
det_outs
=
np
.
concatenate
(
det_outs
)
index_outs
=
np
.
concatenate
(
index_outs
)
return
det_outs
,
index_outs
,
lod
class
TestMatrixNMSOp
(
OpTest
):
def
set_argument
(
self
):
self
.
post_threshold
=
0.
self
.
use_gaussian
=
False
def
setUp
(
self
):
self
.
set_argument
()
N
=
7
M
=
1200
C
=
21
BOX_SIZE
=
4
background
=
0
nms_top_k
=
400
keep_top_k
=
200
score_threshold
=
0.01
post_threshold
=
self
.
post_threshold
use_gaussian
=
False
if
hasattr
(
self
,
'use_gaussian'
):
use_gaussian
=
self
.
use_gaussian
gaussian_sigma
=
2.
scores
=
np
.
random
.
random
((
N
*
M
,
C
)).
astype
(
'float32'
)
scores
=
np
.
apply_along_axis
(
softmax
,
1
,
scores
)
scores
=
np
.
reshape
(
scores
,
(
N
,
M
,
C
))
scores
=
np
.
transpose
(
scores
,
(
0
,
2
,
1
))
boxes
=
np
.
random
.
random
((
N
,
M
,
BOX_SIZE
)).
astype
(
'float32'
)
boxes
[:,
:,
0
:
2
]
=
boxes
[:,
:,
0
:
2
]
*
0.5
boxes
[:,
:,
2
:
4
]
=
boxes
[:,
:,
2
:
4
]
*
0.5
+
0.5
det_outs
,
index_outs
,
lod
=
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
post_threshold
,
nms_top_k
,
keep_top_k
,
True
,
use_gaussian
,
gaussian_sigma
)
empty
=
len
(
det_outs
)
==
0
det_outs
=
np
.
array
([],
dtype
=
np
.
float32
)
if
empty
else
det_outs
index_outs
=
np
.
array
([],
dtype
=
np
.
float32
)
if
empty
else
index_outs
nmsed_outs
=
det_outs
.
astype
(
'float32'
)
self
.
op_type
=
'matrix_nms'
self
.
inputs
=
{
'BBoxes'
:
boxes
,
'Scores'
:
scores
}
self
.
outputs
=
{
'Out'
:
(
nmsed_outs
,
[
lod
]),
'Index'
:
(
index_outs
[:,
None
],
[
lod
])
}
self
.
attrs
=
{
'background_label'
:
0
,
'nms_top_k'
:
nms_top_k
,
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
score_threshold
,
'post_threshold'
:
post_threshold
,
'use_gaussian'
:
use_gaussian
,
'gaussian_sigma'
:
gaussian_sigma
,
'normalized'
:
True
,
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestMatrixNMSOpNoOutput
(
TestMatrixNMSOp
):
def
set_argument
(
self
):
self
.
post_threshold
=
2.0
class
TestMatrixNMSOpGaussian
(
TestMatrixNMSOp
):
def
set_argument
(
self
):
self
.
post_threshold
=
0.
self
.
use_gaussian
=
True
class
TestMatrixNMSError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
M
=
1200
N
=
7
C
=
21
BOX_SIZE
=
4
nms_top_k
=
400
keep_top_k
=
200
score_threshold
=
0.01
post_threshold
=
0.
boxes_np
=
np
.
random
.
random
((
M
,
C
,
BOX_SIZE
)).
astype
(
'float32'
)
scores
=
np
.
random
.
random
((
N
*
M
,
C
)).
astype
(
'float32'
)
scores
=
np
.
apply_along_axis
(
softmax
,
1
,
scores
)
scores
=
np
.
reshape
(
scores
,
(
N
,
M
,
C
))
scores_np
=
np
.
transpose
(
scores
,
(
0
,
2
,
1
))
boxes_data
=
fluid
.
data
(
name
=
'bboxes'
,
shape
=
[
M
,
C
,
BOX_SIZE
],
dtype
=
'float32'
)
scores_data
=
fluid
.
data
(
name
=
'scores'
,
shape
=
[
N
,
C
,
M
],
dtype
=
'float32'
)
def
test_bboxes_Variable
():
# the bboxes type must be Variable
fluid
.
layers
.
matrix_nms
(
bboxes
=
boxes_np
,
scores
=
scores_data
,
nms_top_k
=
nms_top_k
,
keep_top_k
=
keep_top_k
,
score_threshold
=
score_threshold
,
post_threshold
=
post_threshold
)
def
test_scores_Variable
():
# the scores type must be Variable
fluid
.
layers
.
matrix_nms
(
bboxes
=
boxes_data
,
scores
=
scores_np
,
nms_top_k
=
nms_top_k
,
keep_top_k
=
keep_top_k
,
score_threshold
=
score_threshold
,
post_threshold
=
post_threshold
)
def
test_empty
():
# when all score are lower than threshold
try
:
fluid
.
layers
.
matrix_nms
(
bboxes
=
boxes_data
,
scores
=
scores_data
,
nms_top_k
=
nms_top_k
,
keep_top_k
=
keep_top_k
,
score_threshold
=
10.
,
post_threshold
=
post_threshold
)
except
Exception
as
e
:
self
.
fail
(
e
)
def
test_coverage
():
# cover correct workflow
try
:
fluid
.
layers
.
matrix_nms
(
bboxes
=
boxes_data
,
scores
=
scores_data
,
nms_top_k
=
nms_top_k
,
keep_top_k
=
keep_top_k
,
score_threshold
=
score_threshold
,
post_threshold
=
post_threshold
)
except
Exception
as
e
:
self
.
fail
(
e
)
self
.
assertRaises
(
TypeError
,
test_bboxes_Variable
)
self
.
assertRaises
(
TypeError
,
test_scores_Variable
)
test_coverage
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录