Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
fb43c6b4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fb43c6b4
编写于
5月 25, 2018
作者:
S
Siddharth Goyal
提交者:
GitHub
5月 25, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix attribute name in new API (#10947)
上级
c79ec9f0
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
90 addition
and
83 deletion
+90
-83
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
...d/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
+9
-9
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py
.../image_classification/test_image_classification_resnet.py
+9
-7
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py
...api/image_classification/test_image_classification_vgg.py
+9
-7
python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py
.../label_semantic_roles/test_label_semantic_roles_newapi.py
+8
-8
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
...-level-api/recognize_digits/test_recognize_digits_conv.py
+7
-7
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
...h-level-api/recognize_digits/test_recognize_digits_mlp.py
+7
-7
python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py
...-api/recommender_system/test_recommender_system_newapi.py
+10
-7
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py
...pi/understand_sentiment/test_understand_sentiment_conv.py
+8
-8
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py
...rstand_sentiment/test_understand_sentiment_dynamic_rnn.py
+8
-8
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py
...stand_sentiment/test_understand_sentiment_stacked_lstm.py
+8
-8
python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py
...sts/book/high-level-api/word2vec/test_word2vec_new_api.py
+7
-7
未找到文件。
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
浏览文件 @
fb43c6b4
...
...
@@ -48,7 +48,7 @@ def linear():
return
avg_loss
def
train
(
use_cuda
,
train_program
,
save
_dirname
):
def
train
(
use_cuda
,
train_program
,
params
_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
...
...
@@ -68,8 +68,8 @@ def train(use_cuda, train_program, save_dirname):
['15.343549569447836']
...
'''
if
save
_dirname
is
not
None
:
trainer
.
save_params
(
save
_dirname
)
if
params
_dirname
is
not
None
:
trainer
.
save_params
(
params
_dirname
)
trainer
.
stop
()
trainer
.
train
(
...
...
@@ -80,13 +80,13 @@ def train(use_cuda, train_program, save_dirname):
# infer
def
infer
(
use_cuda
,
inference_program
,
save
_dirname
=
None
):
if
save
_dirname
is
None
:
def
infer
(
use_cuda
,
inference_program
,
params
_dirname
=
None
):
if
params
_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save
_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params
_dirname
,
place
=
place
)
batch_size
=
10
tensor_x
=
numpy
.
random
.
uniform
(
0
,
10
,
[
batch_size
,
13
]).
astype
(
"float32"
)
...
...
@@ -100,10 +100,10 @@ def main(use_cuda):
return
# Directory for saving the trained model
save
_dirname
=
"fit_a_line.inference.model"
params
_dirname
=
"fit_a_line.inference.model"
train
(
use_cuda
,
linear
,
save
_dirname
)
infer
(
use_cuda
,
inference_program
,
save
_dirname
)
train
(
use_cuda
,
linear
,
params
_dirname
)
infer
(
use_cuda
,
inference_program
,
params
_dirname
)
class
TestFitALine
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py
浏览文件 @
fb43c6b4
...
...
@@ -85,7 +85,7 @@ def train_network():
return
[
avg_cost
,
accuracy
]
def
train
(
use_cuda
,
train_program
,
save
_dirname
):
def
train
(
use_cuda
,
train_program
,
params
_dirname
):
BATCH_SIZE
=
128
EPOCH_NUM
=
1
...
...
@@ -105,8 +105,8 @@ def train(use_cuda, train_program, save_dirname):
print
(
'Loss {0:2.2}, Acc {1:2.2}'
.
format
(
avg_cost
,
accuracy
))
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
if
save
_dirname
is
not
None
:
trainer
.
save_params
(
save
_dirname
)
if
params
_dirname
is
not
None
:
trainer
.
save_params
(
params
_dirname
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
...
...
@@ -122,10 +122,10 @@ def train(use_cuda, train_program, save_dirname):
feed_order
=
[
'pixel'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
save
_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
params
_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save
_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params
_dirname
,
place
=
place
)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range
...
...
@@ -142,12 +142,14 @@ def main(use_cuda):
save_path
=
"image_classification_resnet.inference.model"
train
(
use_cuda
=
use_cuda
,
train_program
=
train_network
,
save_dirname
=
save_path
)
use_cuda
=
use_cuda
,
train_program
=
train_network
,
params_dirname
=
save_path
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_network
,
save
_dirname
=
save_path
)
params
_dirname
=
save_path
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py
浏览文件 @
fb43c6b4
...
...
@@ -64,7 +64,7 @@ def train_network():
return
[
avg_cost
,
accuracy
]
def
train
(
use_cuda
,
train_program
,
save
_dirname
):
def
train
(
use_cuda
,
train_program
,
params
_dirname
):
BATCH_SIZE
=
128
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -82,8 +82,8 @@ def train(use_cuda, train_program, save_dirname):
print
(
'Loss {0:2.2}, Acc {1:2.2}'
.
format
(
avg_cost
,
accuracy
))
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
if
save
_dirname
is
not
None
:
trainer
.
save_params
(
save
_dirname
)
if
params
_dirname
is
not
None
:
trainer
.
save_params
(
params
_dirname
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
...
...
@@ -99,10 +99,10 @@ def train(use_cuda, train_program, save_dirname):
feed_order
=
[
'pixel'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
save
_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
params
_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save
_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params
_dirname
,
place
=
place
)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range
...
...
@@ -119,12 +119,14 @@ def main(use_cuda):
save_path
=
"image_classification_vgg.inference.model"
train
(
use_cuda
=
use_cuda
,
train_program
=
train_network
,
save_dirname
=
save_path
)
use_cuda
=
use_cuda
,
train_program
=
train_network
,
params_dirname
=
save_path
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_network
,
save
_dirname
=
save_path
)
params
_dirname
=
save_path
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py
浏览文件 @
fb43c6b4
...
...
@@ -141,7 +141,7 @@ def train_program():
return
[
avg_cost
]
def
train
(
use_cuda
,
train_program
,
save_path
):
def
train
(
use_cuda
,
train_program
,
params_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
...
...
@@ -172,7 +172,7 @@ def train(use_cuda, train_program, save_path):
print
(
"avg_cost: %s"
%
avg_cost
)
if
float
(
avg_cost
)
<
100.0
:
# Large value to increase CI speed
trainer
.
save_params
(
save_path
)
trainer
.
save_params
(
params_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
)))
...
...
@@ -183,7 +183,7 @@ def train(use_cuda, train_program, save_path):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
save_path
)
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
train_reader
=
paddle
.
batch
(
...
...
@@ -197,10 +197,10 @@ def train(use_cuda, train_program, save_path):
feed_order
=
feed_order
)
def
infer
(
use_cuda
,
inference_program
,
save_path
):
def
infer
(
use_cuda
,
inference_program
,
params_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_program
,
param_path
=
save_path
,
place
=
place
)
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
# Setup inputs by creating LoDTensors to represent sequences of words.
# Here each word is the basic element of these LoDTensors and the shape of
...
...
@@ -251,9 +251,9 @@ def infer(use_cuda, inference_program, save_path):
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"label_semantic_roles.inference.model"
train
(
use_cuda
,
train_program
,
save_path
)
infer
(
use_cuda
,
inference_program
,
save_path
)
params_dirname
=
"label_semantic_roles.inference.model"
train
(
use_cuda
,
train_program
,
params_dirname
)
infer
(
use_cuda
,
inference_program
,
params_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
浏览文件 @
fb43c6b4
...
...
@@ -57,7 +57,7 @@ def train_program():
return
[
avg_cost
,
acc
]
def
train
(
use_cuda
,
train_program
,
save
_dirname
):
def
train
(
use_cuda
,
train_program
,
params
_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
...
...
@@ -78,7 +78,7 @@ def train(use_cuda, train_program, save_dirname):
print
(
"acc : %s"
%
acc
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save
_dirname
)
trainer
.
save_params
(
params
_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
...
...
@@ -100,11 +100,11 @@ def train(use_cuda, train_program, save_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
save
_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
params
_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save
_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params
_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -116,17 +116,17 @@ def infer(use_cuda, inference_program, save_dirname=None):
def
main
(
use_cuda
):
save
_dirname
=
"recognize_digits_conv.inference.model"
params
_dirname
=
"recognize_digits_conv.inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_dirname
=
save
_dirname
)
params_dirname
=
params
_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_dirname
=
save
_dirname
)
params_dirname
=
params
_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
浏览文件 @
fb43c6b4
...
...
@@ -44,7 +44,7 @@ def train_program():
return
[
avg_cost
,
acc
]
def
train
(
use_cuda
,
train_program
,
save
_dirname
):
def
train
(
use_cuda
,
train_program
,
params
_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
...
...
@@ -62,7 +62,7 @@ def train(use_cuda, train_program, save_dirname):
print
(
"acc : %s"
%
acc
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save
_dirname
)
trainer
.
save_params
(
params
_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
...
...
@@ -81,11 +81,11 @@ def train(use_cuda, train_program, save_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
save
_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
params
_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save
_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params
_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -97,17 +97,17 @@ def infer(use_cuda, inference_program, save_dirname=None):
def
main
(
use_cuda
):
save
_dirname
=
"recognize_digits_mlp.inference.model"
params
_dirname
=
"recognize_digits_mlp.inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_dirname
=
save
_dirname
)
params_dirname
=
params
_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_dirname
=
save
_dirname
)
params_dirname
=
params
_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py
浏览文件 @
fb43c6b4
...
...
@@ -155,7 +155,7 @@ def train_program():
return
[
avg_cost
,
scale_infer
]
def
train
(
use_cuda
,
train_program
,
save_path
):
def
train
(
use_cuda
,
train_program
,
params_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.2
)
...
...
@@ -180,7 +180,7 @@ def train(use_cuda, train_program, save_path):
print
(
"avg_cost: %s"
%
avg_cost
)
if
float
(
avg_cost
)
<
4
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_path
)
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}'
.
format
(
event
.
epoch
+
1
,
...
...
@@ -200,10 +200,10 @@ def train(use_cuda, train_program, save_path):
feed_order
=
feed_order
)
def
infer
(
use_cuda
,
inference_program
,
save_path
):
def
infer
(
use_cuda
,
inference_program
,
params_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_program
,
param_path
=
save_path
,
place
=
place
)
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
# Use the first data from paddle.dataset.movielens.test() as input.
# Use create_lod_tensor(data, lod, place) API to generate LoD Tensor,
...
...
@@ -240,12 +240,15 @@ def infer(use_cuda, inference_program, save_path):
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"recommender_system.inference.model"
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_path
=
save_path
)
params_dirname
=
"recommender_system.inference.model"
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
params_dirname
=
params_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_path
=
save_path
)
params_dirname
=
params_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py
浏览文件 @
fb43c6b4
...
...
@@ -64,7 +64,7 @@ def train_program(word_dict):
return
[
avg_cost
,
accuracy
]
def
train
(
use_cuda
,
train_program
,
save
_dirname
):
def
train
(
use_cuda
,
train_program
,
params
_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.002
)
...
...
@@ -85,7 +85,7 @@ def train(use_cuda, train_program, save_dirname):
print
(
"acc : %s"
%
acc
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save
_dirname
)
trainer
.
save_params
(
params
_dirname
)
trainer
.
stop
()
else
:
...
...
@@ -97,7 +97,7 @@ def train(use_cuda, train_program, save_dirname):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
save
_dirname
)
trainer
.
save_params
(
params
_dirname
)
trainer
.
stop
()
train_reader
=
paddle
.
batch
(
...
...
@@ -112,13 +112,13 @@ def train(use_cuda, train_program, save_dirname):
feed_order
=
[
'words'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
save
_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
params
_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
partial
(
inference_program
,
word_dict
),
param_path
=
save
_dirname
,
param_path
=
params
_dirname
,
place
=
place
)
# Setup input by creating LoDTensor to represent sequence of words.
...
...
@@ -143,9 +143,9 @@ def infer(use_cuda, inference_program, save_dirname=None):
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"understand_sentiment_conv.inference.model"
train
(
use_cuda
,
train_program
,
save_path
)
infer
(
use_cuda
,
inference_program
,
save_path
)
params_dirname
=
"understand_sentiment_conv.inference.model"
train
(
use_cuda
,
train_program
,
params_dirname
)
infer
(
use_cuda
,
inference_program
,
params_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py
浏览文件 @
fb43c6b4
...
...
@@ -79,7 +79,7 @@ def train_program(word_dict):
return
[
avg_cost
,
accuracy
]
def
train
(
use_cuda
,
train_program
,
save
_dirname
):
def
train
(
use_cuda
,
train_program
,
params
_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.002
)
...
...
@@ -100,7 +100,7 @@ def train(use_cuda, train_program, save_dirname):
print
(
"acc : %s"
%
acc
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save
_dirname
)
trainer
.
save_params
(
params
_dirname
)
trainer
.
stop
()
else
:
...
...
@@ -112,7 +112,7 @@ def train(use_cuda, train_program, save_dirname):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
save
_dirname
)
trainer
.
save_params
(
params
_dirname
)
trainer
.
stop
()
train_reader
=
paddle
.
batch
(
...
...
@@ -127,13 +127,13 @@ def train(use_cuda, train_program, save_dirname):
feed_order
=
[
'words'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
save
_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
params
_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
partial
(
inference_program
,
word_dict
),
param_path
=
save
_dirname
,
param_path
=
params
_dirname
,
place
=
place
)
# Setup input by creating LoDTensor to represent sequence of words.
...
...
@@ -158,9 +158,9 @@ def infer(use_cuda, inference_program, save_dirname=None):
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"understand_sentiment_conv.inference.model"
train
(
use_cuda
,
train_program
,
save_path
)
infer
(
use_cuda
,
inference_program
,
save_path
)
params_dirname
=
"understand_sentiment_conv.inference.model"
train
(
use_cuda
,
train_program
,
params_dirname
)
infer
(
use_cuda
,
inference_program
,
params_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py
浏览文件 @
fb43c6b4
...
...
@@ -71,7 +71,7 @@ def train_program(word_dict):
return
[
avg_cost
,
accuracy
]
def
train
(
use_cuda
,
train_program
,
save
_dirname
):
def
train
(
use_cuda
,
train_program
,
params
_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.002
)
...
...
@@ -92,7 +92,7 @@ def train(use_cuda, train_program, save_dirname):
print
(
"acc : %s"
%
acc
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save
_dirname
)
trainer
.
save_params
(
params
_dirname
)
trainer
.
stop
()
else
:
...
...
@@ -104,7 +104,7 @@ def train(use_cuda, train_program, save_dirname):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
save
_dirname
)
trainer
.
save_params
(
params
_dirname
)
trainer
.
stop
()
train_reader
=
paddle
.
batch
(
...
...
@@ -119,13 +119,13 @@ def train(use_cuda, train_program, save_dirname):
feed_order
=
[
'words'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
save
_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
params
_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
partial
(
inference_program
,
word_dict
),
param_path
=
save
_dirname
,
param_path
=
params
_dirname
,
place
=
place
)
# Setup input by creating LoDTensor to represent sequence of words.
...
...
@@ -150,9 +150,9 @@ def infer(use_cuda, inference_program, save_dirname=None):
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"understand_sentiment_stacked_lstm.inference.model"
train
(
use_cuda
,
train_program
,
save_path
)
infer
(
use_cuda
,
inference_program
,
save_path
)
params_dirname
=
"understand_sentiment_stacked_lstm.inference.model"
train
(
use_cuda
,
train_program
,
params_dirname
)
infer
(
use_cuda
,
inference_program
,
params_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py
浏览文件 @
fb43c6b4
...
...
@@ -80,7 +80,7 @@ def train_program(is_sparse):
return
avg_cost
def
train
(
use_cuda
,
train_program
,
save
_dirname
):
def
train
(
use_cuda
,
train_program
,
params
_dirname
):
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
...
...
@@ -97,7 +97,7 @@ def train(use_cuda, train_program, save_dirname):
print
(
"loss= "
,
avg_cost
)
if
avg_cost
<
10.0
:
trainer
.
save_params
(
save
_dirname
)
trainer
.
save_params
(
params
_dirname
)
trainer
.
stop
()
if
math
.
isnan
(
avg_cost
):
...
...
@@ -115,10 +115,10 @@ def train(use_cuda, train_program, save_dirname):
feed_order
=
[
'firstw'
,
'secondw'
,
'thirdw'
,
'forthw'
,
'nextw'
])
def
infer
(
use_cuda
,
inference_program
,
save
_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
params
_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save
_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params
_dirname
,
place
=
place
)
# Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
# is simply an index to look up for the corresponding word vector and hence
...
...
@@ -153,17 +153,17 @@ def main(use_cuda, is_sparse):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"word2vec.inference.model"
params_dirname
=
"word2vec.inference.model"
train
(
use_cuda
=
use_cuda
,
train_program
=
partial
(
train_program
,
is_sparse
),
save_dirname
=
save_path
)
params_dirname
=
params_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
partial
(
inference_program
,
is_sparse
),
save_dirname
=
save_path
)
params_dirname
=
params_dirname
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录