提交 f8029403 编写于 作者: F fengjiayi

remove Evaluator.Accuracy

上级 101378c8
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
# You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...@@ -138,13 +138,14 @@ def main(): ...@@ -138,13 +138,14 @@ def main():
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
# Evaluator # Evaluator
accuracy = fluid.evaluator.Accuracy(input=predict, label=label) batch_size = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size)
# inference program # inference program
inference_program = fluid.default_main_program().clone() inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program): with fluid.program_guard(inference_program):
test_target = accuracy.metrics + accuracy.states inference_program = fluid.io.get_inference_program(batch_acc)
inference_program = fluid.io.get_inference_program(test_target)
# Optimization # Optimization
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
...@@ -157,27 +158,30 @@ def main(): ...@@ -157,27 +158,30 @@ def main():
# test # test
def test(exe): def test(exe):
accuracy.reset(exe) test_pass_acc = fluid.average.WeightedAverage()
for batch_id, data in enumerate(test_reader()): for batch_id, data in enumerate(test_reader()):
img_data = np.array(map(lambda x: x[0].reshape(data_shape), img_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32") data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1]) y_data = y_data.reshape([-1, 1])
exe.run(inference_program, outs = exe.run(inference_program,
feed={"pixel": img_data, feed={"pixel": img_data,
"label": y_data}) "label": y_data},
fetch_list=[batch_acc, batch_size])
test_pass_acc.add(value=np.array(outs[0]), weight=np.array(outs[1]))
return accuracy.eval(exe) return test_pass_acc.eval()
def train_loop(exe, trainer_prog): def train_loop(exe, trainer_prog):
iters = 0 iters = 0
ts = time.time() ts = time.time()
train_pass_acc = fluid.average.WeightedAverage()
for pass_id in range(args.num_passes): for pass_id in range(args.num_passes):
# train # train
start_time = time.time() start_time = time.time()
num_samples = 0 num_samples = 0
accuracy.reset(exe) train_pass_acc.reset()
with profiler.profiler("CPU", 'total') as prof: with profiler.profiler("CPU", 'total') as prof:
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
ts = time.time() ts = time.time()
...@@ -187,13 +191,14 @@ def main(): ...@@ -187,13 +191,14 @@ def main():
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1]) y_data = y_data.reshape([-1, 1])
loss, acc = exe.run( loss, acc, b_size = exe.run(
trainer_prog, trainer_prog,
feed={"pixel": img_data, feed={"pixel": img_data,
"label": y_data}, "label": y_data},
fetch_list=[avg_cost] + accuracy.metrics) fetch_list=[avg_cost, batch_acc, batch_size])
iters += 1 iters += 1
num_samples += len(data) num_samples += len(data)
train_pass_acc.add(value=acc, weight=b_size)
print( print(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s" "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
% (pass_id, iters, loss, acc, % (pass_id, iters, loss, acc,
...@@ -201,7 +206,7 @@ def main(): ...@@ -201,7 +206,7 @@ def main():
) # The accuracy is the accumulation of batches, but not the current batch. ) # The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed = time.time() - start_time pass_elapsed = time.time() - start_time
pass_train_acc = accuracy.eval(exe) pass_train_acc = train_pass_acc.eval()
pass_test_acc = test(exe) pass_test_acc = test(exe)
print( print(
"Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n" "Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n"
......
...@@ -29,6 +29,7 @@ import optimizer ...@@ -29,6 +29,7 @@ import optimizer
import learning_rate_decay import learning_rate_decay
import backward import backward
import regularizer import regularizer
import average
from param_attr import ParamAttr, WeightNormParamAttr from param_attr import ParamAttr, WeightNormParamAttr
from data_feeder import DataFeeder from data_feeder import DataFeeder
from core import LoDTensor, CPUPlace, CUDAPlace from core import LoDTensor, CPUPlace, CUDAPlace
......
...@@ -105,44 +105,6 @@ class Evaluator(object): ...@@ -105,44 +105,6 @@ class Evaluator(object):
return state return state
class Accuracy(Evaluator):
"""
Average Accuracy for multiple mini-batches.
"""
def __init__(self, input, label, k=1, **kwargs):
super(Accuracy, self).__init__("accuracy", **kwargs)
main_program = self.helper.main_program
if main_program.current_block().idx != 0:
raise ValueError("You can only invoke Evaluator in root block")
self.total = self.create_state(dtype='int64', shape=[1], suffix='total')
self.correct = self.create_state(
dtype='int64', shape=[1], suffix='correct')
total = self.helper.create_tmp_variable(dtype='int')
correct = self.helper.create_tmp_variable(dtype='int')
acc = layers.accuracy(
input=input, label=label, k=k, total=total, correct=correct)
total = layers.cast(x=total, dtype='int64')
correct = layers.cast(x=correct, dtype='int64')
layers.sums(input=[self.total, total], out=self.total)
layers.sums(input=[self.correct, correct], out=self.correct)
self.metrics.append(acc)
def eval(self, executor, eval_program=None):
if eval_program is None:
eval_program = Program()
block = eval_program.current_block()
with program_guard(main_program=eval_program):
total = _clone_var_(block, self.total)
correct = _clone_var_(block, self.correct)
total = layers.cast(total, dtype='float32')
correct = layers.cast(correct, dtype='float32')
out = layers.elementwise_div(x=correct, y=total)
return np.array(executor.run(eval_program, fetch_list=[out])[0])
class ChunkEvaluator(Evaluator): class ChunkEvaluator(Evaluator):
""" """
Accumulate counter numbers output by chunk_eval from mini-batches and Accumulate counter numbers output by chunk_eval from mini-batches and
......
...@@ -122,7 +122,8 @@ avg_cost = fluid.layers.mean(cost) ...@@ -122,7 +122,8 @@ avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.001) optimizer = fluid.optimizer.Adam(learning_rate=0.001)
opts = optimizer.minimize(avg_cost) opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label) batch_size = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(input=predict, label=label, total=batch_size)
fluid.memory_optimize(fluid.default_main_program()) fluid.memory_optimize(fluid.default_main_program())
...@@ -144,13 +145,17 @@ feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) ...@@ -144,13 +145,17 @@ feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
i = 0 i = 0
accuracy = fluid.average.WeightedAverage()
for pass_id in range(PASS_NUM): for pass_id in range(PASS_NUM):
accuracy.reset(exe) accuracy.reset()
for data in train_reader(): for data in train_reader():
loss, acc = exe.run(fluid.default_main_program(), loss, acc, weight = exe.run(
feed=feeder.feed(data), fluid.default_main_program(),
fetch_list=[avg_cost] + accuracy.metrics) feed=feeder.feed(data),
pass_acc = accuracy.eval(exe) fetch_list=[avg_cost, batch_acc, batch_size])
accuracy.add(value=acc, weight=weight)
pass_acc = accuracy.eval()
print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
pass_acc)) pass_acc))
# this model is slow, so if we can train two mini batch, we think it works properly. # this model is slow, so if we can train two mini batch, we think it works properly.
......
...@@ -37,7 +37,9 @@ class TestProfiler(unittest.TestCase): ...@@ -37,7 +37,9 @@ class TestProfiler(unittest.TestCase):
label = fluid.layers.data(name='y', shape=[1], dtype='int64') label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label) batch_size = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size)
optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9) optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
opts = optimizer.minimize(avg_cost, startup_program=startup_program) opts = optimizer.minimize(avg_cost, startup_program=startup_program)
...@@ -46,7 +48,7 @@ class TestProfiler(unittest.TestCase): ...@@ -46,7 +48,7 @@ class TestProfiler(unittest.TestCase):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup_program) exe.run(startup_program)
accuracy.reset(exe) pass_acc_calculator = fluid.average.WeightedAverage()
with profiler.profiler(state, 'total') as prof: with profiler.profiler(state, 'total') as prof:
for iter in range(10): for iter in range(10):
if iter == 2: if iter == 2:
...@@ -57,9 +59,11 @@ class TestProfiler(unittest.TestCase): ...@@ -57,9 +59,11 @@ class TestProfiler(unittest.TestCase):
outs = exe.run(main_program, outs = exe.run(main_program,
feed={'x': x, feed={'x': x,
'y': y}, 'y': y},
fetch_list=[avg_cost] + accuracy.metrics) fetch_list=[avg_cost, batch_acc, batch_size])
acc = np.array(outs[1]) acc = np.array(outs[1])
pass_acc = accuracy.eval(exe) b_size = np.array(outs[2])
pass_acc_calculator.add(value=acc, weight=b_size)
pass_acc = pass_acc_calculator.eval()
def test_cpu_profiler(self): def test_cpu_profiler(self):
self.net_profiler('CPU') self.net_profiler('CPU')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册