Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f8029403
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f8029403
编写于
3月 05, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove Evaluator.Accuracy
上级
101378c8
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
40 addition
and
63 deletion
+40
-63
benchmark/cluster/vgg16/vgg16_fluid.py
benchmark/cluster/vgg16/vgg16_fluid.py
+20
-15
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-0
python/paddle/fluid/average.py
python/paddle/fluid/average.py
+0
-0
python/paddle/fluid/evaluator.py
python/paddle/fluid/evaluator.py
+0
-38
python/paddle/fluid/layers/metric.py
python/paddle/fluid/layers/metric.py
+0
-0
python/paddle/fluid/tests/book_memory_optimization/test_memopt_image_classification_train.py
...ry_optimization/test_memopt_image_classification_train.py
+11
-6
python/paddle/fluid/tests/unittests/test_profiler.py
python/paddle/fluid/tests/unittests/test_profiler.py
+8
-4
未找到文件。
benchmark/cluster/vgg16/vgg16_fluid.py
浏览文件 @
f8029403
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -138,13 +138,14 @@ def main():
...
@@ -138,13 +138,14 @@ def main():
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
# Evaluator
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
predict
,
label
=
label
)
batch_size
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size
)
# inference program
# inference program
inference_program
=
fluid
.
default_main_program
().
clone
()
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
with
fluid
.
program_guard
(
inference_program
):
test_target
=
accuracy
.
metrics
+
accuracy
.
states
inference_program
=
fluid
.
io
.
get_inference_program
(
batch_acc
)
inference_program
=
fluid
.
io
.
get_inference_program
(
test_target
)
# Optimization
# Optimization
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
learning_rate
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
learning_rate
)
...
@@ -157,27 +158,30 @@ def main():
...
@@ -157,27 +158,30 @@ def main():
# test
# test
def
test
(
exe
):
def
test
(
exe
):
accuracy
.
reset
(
exe
)
test_pass_acc
=
fluid
.
average
.
WeightedAverage
(
)
for
batch_id
,
data
in
enumerate
(
test_reader
()):
for
batch_id
,
data
in
enumerate
(
test_reader
()):
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
(
data_shape
),
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
(
data_shape
),
data
)).
astype
(
"float32"
)
data
)).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
y_data
=
y_data
.
reshape
([
-
1
,
1
])
exe
.
run
(
inference_program
,
outs
=
exe
.
run
(
inference_program
,
feed
=
{
"pixel"
:
img_data
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
})
"label"
:
y_data
},
fetch_list
=
[
batch_acc
,
batch_size
])
test_pass_acc
.
add
(
value
=
np
.
array
(
outs
[
0
]),
weight
=
np
.
array
(
outs
[
1
]))
return
accuracy
.
eval
(
exe
)
return
test_pass_acc
.
eval
(
)
def
train_loop
(
exe
,
trainer_prog
):
def
train_loop
(
exe
,
trainer_prog
):
iters
=
0
iters
=
0
ts
=
time
.
time
()
ts
=
time
.
time
()
train_pass_acc
=
fluid
.
average
.
WeightedAverage
()
for
pass_id
in
range
(
args
.
num_passes
):
for
pass_id
in
range
(
args
.
num_passes
):
# train
# train
start_time
=
time
.
time
()
start_time
=
time
.
time
()
num_samples
=
0
num_samples
=
0
accuracy
.
reset
(
exe
)
train_pass_acc
.
reset
(
)
with
profiler
.
profiler
(
"CPU"
,
'total'
)
as
prof
:
with
profiler
.
profiler
(
"CPU"
,
'total'
)
as
prof
:
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
ts
=
time
.
time
()
ts
=
time
.
time
()
...
@@ -187,13 +191,14 @@ def main():
...
@@ -187,13 +191,14 @@ def main():
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
y_data
=
y_data
.
reshape
([
-
1
,
1
])
loss
,
acc
=
exe
.
run
(
loss
,
acc
,
b_size
=
exe
.
run
(
trainer_prog
,
trainer_prog
,
feed
=
{
"pixel"
:
img_data
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
},
"label"
:
y_data
},
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
]
)
iters
+=
1
iters
+=
1
num_samples
+=
len
(
data
)
num_samples
+=
len
(
data
)
train_pass_acc
.
add
(
value
=
acc
,
weight
=
b_size
)
print
(
print
(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
%
(
pass_id
,
iters
,
loss
,
acc
,
%
(
pass_id
,
iters
,
loss
,
acc
,
...
@@ -201,7 +206,7 @@ def main():
...
@@ -201,7 +206,7 @@ def main():
)
# The accuracy is the accumulation of batches, but not the current batch.
)
# The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed
=
time
.
time
()
-
start_time
pass_elapsed
=
time
.
time
()
-
start_time
pass_train_acc
=
accuracy
.
eval
(
exe
)
pass_train_acc
=
train_pass_acc
.
eval
(
)
pass_test_acc
=
test
(
exe
)
pass_test_acc
=
test
(
exe
)
print
(
print
(
"Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f
\n
"
"Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f
\n
"
...
...
python/paddle/fluid/__init__.py
浏览文件 @
f8029403
...
@@ -29,6 +29,7 @@ import optimizer
...
@@ -29,6 +29,7 @@ import optimizer
import
learning_rate_decay
import
learning_rate_decay
import
backward
import
backward
import
regularizer
import
regularizer
import
average
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
data_feeder
import
DataFeeder
from
data_feeder
import
DataFeeder
from
core
import
LoDTensor
,
CPUPlace
,
CUDAPlace
from
core
import
LoDTensor
,
CPUPlace
,
CUDAPlace
...
...
python/paddle/
v2/
fluid/average.py
→
python/paddle/fluid/average.py
浏览文件 @
f8029403
文件已移动
python/paddle/fluid/evaluator.py
浏览文件 @
f8029403
...
@@ -105,44 +105,6 @@ class Evaluator(object):
...
@@ -105,44 +105,6 @@ class Evaluator(object):
return
state
return
state
class
Accuracy
(
Evaluator
):
"""
Average Accuracy for multiple mini-batches.
"""
def
__init__
(
self
,
input
,
label
,
k
=
1
,
**
kwargs
):
super
(
Accuracy
,
self
).
__init__
(
"accuracy"
,
**
kwargs
)
main_program
=
self
.
helper
.
main_program
if
main_program
.
current_block
().
idx
!=
0
:
raise
ValueError
(
"You can only invoke Evaluator in root block"
)
self
.
total
=
self
.
create_state
(
dtype
=
'int64'
,
shape
=
[
1
],
suffix
=
'total'
)
self
.
correct
=
self
.
create_state
(
dtype
=
'int64'
,
shape
=
[
1
],
suffix
=
'correct'
)
total
=
self
.
helper
.
create_tmp_variable
(
dtype
=
'int'
)
correct
=
self
.
helper
.
create_tmp_variable
(
dtype
=
'int'
)
acc
=
layers
.
accuracy
(
input
=
input
,
label
=
label
,
k
=
k
,
total
=
total
,
correct
=
correct
)
total
=
layers
.
cast
(
x
=
total
,
dtype
=
'int64'
)
correct
=
layers
.
cast
(
x
=
correct
,
dtype
=
'int64'
)
layers
.
sums
(
input
=
[
self
.
total
,
total
],
out
=
self
.
total
)
layers
.
sums
(
input
=
[
self
.
correct
,
correct
],
out
=
self
.
correct
)
self
.
metrics
.
append
(
acc
)
def
eval
(
self
,
executor
,
eval_program
=
None
):
if
eval_program
is
None
:
eval_program
=
Program
()
block
=
eval_program
.
current_block
()
with
program_guard
(
main_program
=
eval_program
):
total
=
_clone_var_
(
block
,
self
.
total
)
correct
=
_clone_var_
(
block
,
self
.
correct
)
total
=
layers
.
cast
(
total
,
dtype
=
'float32'
)
correct
=
layers
.
cast
(
correct
,
dtype
=
'float32'
)
out
=
layers
.
elementwise_div
(
x
=
correct
,
y
=
total
)
return
np
.
array
(
executor
.
run
(
eval_program
,
fetch_list
=
[
out
])[
0
])
class
ChunkEvaluator
(
Evaluator
):
class
ChunkEvaluator
(
Evaluator
):
"""
"""
Accumulate counter numbers output by chunk_eval from mini-batches and
Accumulate counter numbers output by chunk_eval from mini-batches and
...
...
python/paddle/
v2/
fluid/layers/metric.py
→
python/paddle/fluid/layers/metric.py
浏览文件 @
f8029403
文件已移动
python/paddle/fluid/tests/book_memory_optimization/test_memopt_image_classification_train.py
浏览文件 @
f8029403
...
@@ -122,7 +122,8 @@ avg_cost = fluid.layers.mean(cost)
...
@@ -122,7 +122,8 @@ avg_cost = fluid.layers.mean(cost)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opts
=
optimizer
.
minimize
(
avg_cost
)
opts
=
optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
predict
,
label
=
label
)
batch_size
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
...
@@ -144,13 +145,17 @@ feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
...
@@ -144,13 +145,17 @@ feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
i
=
0
i
=
0
accuracy
=
fluid
.
average
.
WeightedAverage
()
for
pass_id
in
range
(
PASS_NUM
):
for
pass_id
in
range
(
PASS_NUM
):
accuracy
.
reset
(
exe
)
accuracy
.
reset
()
for
data
in
train_reader
():
for
data
in
train_reader
():
loss
,
acc
=
exe
.
run
(
fluid
.
default_main_program
(),
loss
,
acc
,
weight
=
exe
.
run
(
feed
=
feeder
.
feed
(
data
),
fluid
.
default_main_program
(),
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
feed
=
feeder
.
feed
(
data
),
pass_acc
=
accuracy
.
eval
(
exe
)
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
])
accuracy
.
add
(
value
=
acc
,
weight
=
weight
)
pass_acc
=
accuracy
.
eval
()
print
(
"loss:"
+
str
(
loss
)
+
" acc:"
+
str
(
acc
)
+
" pass_acc:"
+
str
(
print
(
"loss:"
+
str
(
loss
)
+
" acc:"
+
str
(
acc
)
+
" pass_acc:"
+
str
(
pass_acc
))
pass_acc
))
# this model is slow, so if we can train two mini batch, we think it works properly.
# this model is slow, so if we can train two mini batch, we think it works properly.
...
...
python/paddle/fluid/tests/unittests/test_profiler.py
浏览文件 @
f8029403
...
@@ -37,7 +37,9 @@ class TestProfiler(unittest.TestCase):
...
@@ -37,7 +37,9 @@ class TestProfiler(unittest.TestCase):
label
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
predict
,
label
=
label
)
batch_size
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.001
,
momentum
=
0.9
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.001
,
momentum
=
0.9
)
opts
=
optimizer
.
minimize
(
avg_cost
,
startup_program
=
startup_program
)
opts
=
optimizer
.
minimize
(
avg_cost
,
startup_program
=
startup_program
)
...
@@ -46,7 +48,7 @@ class TestProfiler(unittest.TestCase):
...
@@ -46,7 +48,7 @@ class TestProfiler(unittest.TestCase):
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
exe
.
run
(
startup_program
)
accuracy
.
reset
(
exe
)
pass_acc_calculator
=
fluid
.
average
.
WeightedAverage
(
)
with
profiler
.
profiler
(
state
,
'total'
)
as
prof
:
with
profiler
.
profiler
(
state
,
'total'
)
as
prof
:
for
iter
in
range
(
10
):
for
iter
in
range
(
10
):
if
iter
==
2
:
if
iter
==
2
:
...
@@ -57,9 +59,11 @@ class TestProfiler(unittest.TestCase):
...
@@ -57,9 +59,11 @@ class TestProfiler(unittest.TestCase):
outs
=
exe
.
run
(
main_program
,
outs
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
x
,
feed
=
{
'x'
:
x
,
'y'
:
y
},
'y'
:
y
},
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
]
)
acc
=
np
.
array
(
outs
[
1
])
acc
=
np
.
array
(
outs
[
1
])
pass_acc
=
accuracy
.
eval
(
exe
)
b_size
=
np
.
array
(
outs
[
2
])
pass_acc_calculator
.
add
(
value
=
acc
,
weight
=
b_size
)
pass_acc
=
pass_acc_calculator
.
eval
()
def
test_cpu_profiler
(
self
):
def
test_cpu_profiler
(
self
):
self
.
net_profiler
(
'CPU'
)
self
.
net_profiler
(
'CPU'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录