Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f6fab559
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f6fab559
编写于
8月 11, 2021
作者:
R
ronnywang
提交者:
GitHub
8月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add reduce_mean_op_npu and test (#34053)
* add reduce_mean_op_npu and test * remove skip.If * update
上级
9ed5db28
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
296 addition
and
0 deletion
+296
-0
paddle/fluid/operators/reduce_ops/reduce_mean_op_npu.cc
paddle/fluid/operators/reduce_ops/reduce_mean_op_npu.cc
+112
-0
python/paddle/fluid/tests/unittests/npu/test_reduce_mean_op_npu.py
...ddle/fluid/tests/unittests/npu/test_reduce_mean_op_npu.py
+184
-0
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_mean_op_npu.cc
0 → 100644
浏览文件 @
f6fab559
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/reduce_ops/reduce_mean_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
NPUReduceMeanOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bool
reduce_all
=
ctx
.
Attr
<
bool
>
(
"reduce_all"
);
auto
dims
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
bool
keep_dim
=
ctx
.
Attr
<
bool
>
(
"keep_dim"
);
auto
input_dims_vec
=
framework
::
vectorize
(
input
->
dims
());
if
(
reduce_all
)
{
dims
.
clear
();
for
(
size_t
i
=
0
;
i
<
input_dims_vec
.
size
();
i
++
)
{
dims
.
push_back
(
static_cast
<
int
>
(
i
));
}
}
const
auto
&
runner
=
NpuOpRunner
(
"ReduceMeanD"
,
{
*
input
},
{
*
output
},
{{
"axes"
,
dims
},
{
"keep_dims"
,
keep_dim
}});
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
runner
.
Run
(
stream
);
}
};
template
<
typename
T
>
class
NPUReduceMeanGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bool
reduce_all
=
ctx
.
Attr
<
bool
>
(
"reduce_all"
);
auto
reduce_dims
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
input_dims_vec
=
framework
::
vectorize
(
input
->
dims
());
int
reduce_numel
=
1
;
if
(
reduce_all
)
{
reduce_dims
.
clear
();
for
(
size_t
d
=
0
;
d
<
input_dims_vec
.
size
();
++
d
)
{
reduce_dims
.
push_back
(
static_cast
<
int
>
(
d
));
}
}
for
(
auto
&
d
:
reduce_dims
)
{
if
(
d
<
0
)
{
d
=
d
+
input_dims_vec
.
size
();
}
reduce_numel
*=
input_dims_vec
[
d
];
}
const
auto
&
runner
=
NpuOpRunner
(
"FillV2D"
,
{},
{
*
input_grad
},
{{
"value"
,
1.0
f
/
static_cast
<
float
>
(
reduce_numel
)},
{
"dims"
,
input_dims_vec
}});
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
runner
.
Run
(
stream
);
Tensor
transformed_input_grad
,
transformed_out_grad
;
Tensor
tmp_output_grad
;
auto
tmp_output_dims_vec
=
input_dims_vec
;
for
(
auto
d
:
reduce_dims
)
{
tmp_output_dims_vec
[
d
]
=
1
;
}
tmp_output_grad
.
ShareDataWith
(
*
output_grad
);
tmp_output_grad
.
Resize
(
framework
::
make_ddim
(
tmp_output_dims_vec
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>();
NpuElementWiseOpBroadcast
<
T
>
(
dev_ctx
,
input_grad
,
&
tmp_output_grad
,
0
,
&
transformed_input_grad
,
&
transformed_out_grad
);
const
auto
&
runner2
=
NpuOpRunner
(
"Mul"
,
{
transformed_input_grad
,
transformed_out_grad
},
{
*
input_grad
},
{});
runner2
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
reduce_mean
,
ops
::
NPUReduceMeanOpKernel
<
float
>
);
REGISTER_OP_NPU_KERNEL
(
reduce_mean_grad
,
ops
::
NPUReduceMeanGradOpKernel
<
float
>
);
python/paddle/fluid/tests/unittests/npu/test_reduce_mean_op_npu.py
0 → 100644
浏览文件 @
f6fab559
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
class
TestMeanOp
(
OpTest
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
paddle
.
NPUPlace
(
0
))
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
paddle
.
NPUPlace
(
0
),
[
'X'
],
'Out'
)
class
TestMeanOp5D
(
TestMeanOp
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
2
,
5
,
6
,
10
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
class
TestMeanOp6D
(
TestMeanOp
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
1
,
2
,
5
,
6
,
10
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
class
TestMeanOp8D
(
TestMeanOp
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
3
,
1
,
2
,
1
,
4
,
3
,
10
)).
astype
(
"float32"
)
}
self
.
attrs
=
{
'dim'
:
(
0
,
3
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
(
0
,
3
))}
class
Test1DReduce
(
TestMeanOp
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
120
).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
class
Test2DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
0
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
class
Test2DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
1
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
1
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
2
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce2
(
Test1DReduce
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
-
2
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce3
(
Test1DReduce
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
1
,
2
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
TestKeepDimReduce
(
Test1DReduce
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
[
1
],
'keep_dim'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
class
TestKeepDim8DReduce
(
Test1DReduce
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
5
,
3
,
2
,
2
,
3
,
4
,
2
)).
astype
(
"float32"
)
}
self
.
attrs
=
{
'dim'
:
(
3
,
4
,
5
),
'keep_dim'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
class
TestReduceAll
(
Test1DReduce
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
2
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'reduce_all'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
()}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录