未验证 提交 f6ad2375 编写于 作者: D Double_V 提交者: GitHub

fix pool3d bug, test=develop (#27718)

* fix pool3d bug, test=develop

* fix unitest, test=develop

* fix test and fix pool2d bug, test=develop
上级 0d275916
...@@ -102,14 +102,21 @@ def avg_pool2D_forward_naive(x, ...@@ -102,14 +102,21 @@ def avg_pool2D_forward_naive(x,
c_start = adaptive_start_index(j, W, ksize[1]) c_start = adaptive_start_index(j, W, ksize[1])
c_end = adaptive_end_index(j, W, ksize[1]) c_end = adaptive_end_index(j, W, ksize[1])
else: else:
r_start = np.max((i * strides[0] - paddings[0], 0)) r_start = i * strides[0] - paddings[0]
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) r_end = i * strides[0] + ksize[0] - paddings[0]
c_start = np.max((j * strides[1] - paddings[1], 0)) c_start = j * strides[1] - paddings[1]
c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) c_end = j * strides[1] + ksize[1] - paddings[1]
field_size = (r_end - r_start) * (c_end - c_start)
r_start = np.max((r_start, 0))
r_end = np.min((r_end, H))
c_start = np.max((c_start, 0))
c_end = np.min((c_end, W))
x_masked = x[:, :, r_start:r_end, c_start:c_end] x_masked = x[:, :, r_start:r_end, c_start:c_end]
field_size = ((r_end - r_start) * (c_end - c_start)) \ if (exclusive or adaptive):
if (exclusive or adaptive) else (ksize[0] * ksize[1]) field_size = (r_end - r_start) * (c_end - c_start)
if data_type == np.int8 or data_type == np.uint8: if data_type == np.int8 or data_type == np.uint8:
out[:, :, i, j] = (np.rint( out[:, :, i, j] = (np.rint(
np.sum(x_masked, axis=(2, 3)) / np.sum(x_masked, axis=(2, 3)) /
...@@ -207,22 +214,34 @@ def pool2D_forward_naive(x, ...@@ -207,22 +214,34 @@ def pool2D_forward_naive(x,
in_w_start = adaptive_start_index(j, W, ksize[1]) in_w_start = adaptive_start_index(j, W, ksize[1])
in_w_end = adaptive_end_index(j, W, ksize[1]) in_w_end = adaptive_end_index(j, W, ksize[1])
else: else:
in_w_start = np.max((j * strides[1] - pad_w_left, 0)) in_h_start = i * strides[0] - pad_h_up
in_w_end = np.min((j * strides[1] + ksize[1] - pad_w_left, W)) in_w_start = j * strides[1] - pad_w_left
in_h_end = i * strides[0] + ksize[0] - pad_h_up
in_w_end = j * strides[1] + ksize[1] - pad_w_left
field_size = (in_h_end - in_h_start) * (in_w_end - in_w_start)
in_h_start = np.max((in_h_start, 0))
in_w_start = np.max((in_w_start, 0))
in_h_end = np.min((in_h_end, H))
in_w_end = np.min((in_w_end, W))
if data_format == 'NCHW': if data_format == 'NCHW':
x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end] x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end]
if pool_type == 'avg': if pool_type == 'avg':
field_size = ((in_h_end - in_h_start) * (in_w_end - in_w_start)) \ if (exclusive or adaptive):
if (exclusive or adaptive) else (ksize[0] * ksize[1]) field_size = (in_h_end - in_h_start) * (
in_w_end - in_w_start)
# if (exclusive or adaptive) else (ksize[0] * ksize[1])
out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size
elif pool_type == 'max': elif pool_type == 'max':
out[:, :, i, j] = np.max(x_masked, axis=(2, 3)) out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
elif data_format == 'NHWC': elif data_format == 'NHWC':
x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :] x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :]
if pool_type == 'avg': if pool_type == 'avg':
field_size = ((in_h_end - in_h_start) * (in_w_end - in_w_start)) \ if (exclusive or adaptive):
if (exclusive or adaptive) else (ksize[0] * ksize[1]) field_size = (in_h_end - in_h_start) * (
in_w_end - in_w_start)
out[:, i, j, :] = np.sum(x_masked, axis=(1, 2)) / field_size out[:, i, j, :] = np.sum(x_masked, axis=(1, 2)) / field_size
elif pool_type == 'max': elif pool_type == 'max':
out[:, i, j, :] = np.max(x_masked, axis=(1, 2)) out[:, i, j, :] = np.max(x_masked, axis=(1, 2))
......
...@@ -116,32 +116,44 @@ def pool3D_forward_naive(x, ...@@ -116,32 +116,44 @@ def pool3D_forward_naive(x,
if adaptive: if adaptive:
d_start = adaptive_start_index(k, D, ksize[0]) d_start = adaptive_start_index(k, D, ksize[0])
d_end = adaptive_end_index(k, D, ksize[0]) d_end = adaptive_end_index(k, D, ksize[0])
else:
d_start = np.max((k * strides[0] - pad_d_forth, 0))
d_end = np.min((k * strides[0] + ksize[0] - pad_d_forth, D))
for i in range(H_out): for i in range(H_out):
if adaptive: if adaptive:
h_start = adaptive_start_index(i, H, ksize[1]) h_start = adaptive_start_index(i, H, ksize[1])
h_end = adaptive_end_index(i, H, ksize[1]) h_end = adaptive_end_index(i, H, ksize[1])
else:
h_start = np.max((i * strides[1] - pad_h_up, 0))
h_end = np.min((i * strides[1] + ksize[1] - pad_h_up, H))
for j in range(W_out): for j in range(W_out):
if adaptive: if adaptive:
w_start = adaptive_start_index(j, W, ksize[2]) w_start = adaptive_start_index(j, W, ksize[2])
w_end = adaptive_end_index(j, W, ksize[2]) w_end = adaptive_end_index(j, W, ksize[2])
else: else:
w_start = np.max((j * strides[2] - pad_w_left, 0))
w_end = np.min((j * strides[2] + ksize[2] - pad_w_left, W))
d_start = k * strides[0] - pad_d_forth
d_end = np.min((k * strides[0] + ksize[0] - pad_d_forth,
D + pad_d_back))
h_start = i * strides[1] - pad_h_up
h_end = np.min(
(i * strides[1] + ksize[1] - pad_h_up, H + pad_h_down))
w_start = j * strides[2] - pad_w_left
w_end = np.min((j * strides[2] + ksize[2] - pad_w_left,
W + pad_w_right))
field_size = (d_end - d_start) * (h_end - h_start) * (
w_end - w_start)
w_start = np.max((w_start, 0))
d_start = np.max((d_start, 0))
h_start = np.max((h_start, 0))
w_end = np.min((w_end, W))
d_end = np.min((d_end, D))
h_end = np.min((h_end, H))
if data_format == 'NCDHW': if data_format == 'NCDHW':
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start: x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:
w_end] w_end]
if pool_type == 'avg': if pool_type == 'avg':
field_size = (d_end - d_start) * (h_end - h_start) * (w_end - w_start) \ if (exclusive or adaptive):
if (exclusive or adaptive) else ksize[0] * ksize[1] * ksize[2] field_size = (d_end - d_start) * (
h_end - h_start) * (w_end - w_start)
out[:, :, k, i, j] = np.sum(x_masked, out[:, :, k, i, j] = np.sum(x_masked,
axis=(2, 3, 4)) / field_size axis=(2, 3, 4)) / field_size
elif pool_type == 'max': elif pool_type == 'max':
...@@ -151,8 +163,10 @@ def pool3D_forward_naive(x, ...@@ -151,8 +163,10 @@ def pool3D_forward_naive(x,
x_masked = x[:, d_start:d_end, h_start:h_end, w_start: x_masked = x[:, d_start:d_end, h_start:h_end, w_start:
w_end, :] w_end, :]
if pool_type == 'avg': if pool_type == 'avg':
field_size = (d_end - d_start) * (h_end - h_start) * (w_end - w_start) \ if (exclusive or adaptive):
if (exclusive or adaptive) else ksize[0] * ksize[1] * ksize[2] field_size = (d_end - d_start) * (
h_end - h_start) * (w_end - w_start)
out[:, k, i, j, :] = np.sum(x_masked, out[:, k, i, j, :] = np.sum(x_masked,
axis=(1, 2, 3)) / field_size axis=(1, 2, 3)) / field_size
elif pool_type == 'max': elif pool_type == 'max':
...@@ -564,7 +578,7 @@ class TestAvgInclude_AsyPadding(TestCase2): ...@@ -564,7 +578,7 @@ class TestAvgInclude_AsyPadding(TestCase2):
self.exclusive = False self.exclusive = False
def init_paddings(self): def init_paddings(self):
self.paddings = [1, 2, 1, 1, 1, 0] self.paddings = [2, 2, 1, 1, 0, 0]
@unittest.skipIf(not core.is_compiled_with_cuda(), @unittest.skipIf(not core.is_compiled_with_cuda(),
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册