未验证 提交 f5e7b02a 编写于 作者: T TTerror 提交者: GitHub

add where/where_index/masked_select for kunlun (#37053)

* add where/where_index/masked_select for kunlun

* fix where/where_index

* update where/masked_select
上级 a346c4dc
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/masked_select_op.h"
namespace paddle {
namespace operators {
template <typename T>
class MaskedSelectXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto input = context.Input<framework::Tensor>("X");
auto mask = context.Input<framework::Tensor>("Mask");
auto out = context.Output<framework::Tensor>("Y");
auto* mask_data = mask->data<bool>();
auto* input_data = input->data<T>();
auto input_dim = input->dims();
auto mask_dim = mask->dims();
PADDLE_ENFORCE_EQ(
input_dim, mask_dim,
platform::errors::InvalidArgument(
"The dim size of input and mask in OP(masked_selected) "
"must be equal, but got input dim:(%ld), mask dim: "
"(%ld). Please check input "
"value.",
input_dim, mask_dim));
auto& dev_ctx =
context.template device_context<paddle::platform::XPUDeviceContext>();
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
int* out_size = RAII_GUARD.alloc_l3_or_gm<int32_t>(1);
int out_size_cpu;
int ret = xpu::nonzero_count(dev_ctx.x_context(), mask_data, out_size,
mask->numel());
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
platform::errors::External(
"XPU nonzero_count kernel return wrong value[%d %s]",
ret, XPUAPIErrorMsg[ret]));
if (dev_ctx.x_context()->xpu_stream) {
dev_ctx.Wait();
}
ret = xpu_memcpy(static_cast<void*>(&out_size_cpu),
static_cast<const void*>(out_size), sizeof(int32_t),
XPU_DEVICE_TO_HOST);
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
platform::errors::External("XPU xpu_memcpy return wrong "
"value[%d %s]",
ret, XPUAPIErrorMsg[ret]));
framework::DDim out_dim{out_size_cpu};
out->Resize(out_dim);
auto out_data = out->mutable_data<T>(context.GetPlace());
auto input_shape = framework::vectorize<int>(input_dim);
auto mask_shape = framework::vectorize<int>(mask_dim);
ret = xpu::masked_select(dev_ctx.x_context(), input_data, mask_data,
out_data, input_shape, mask_shape);
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
platform::errors::External(
"XPU masked_select kernel return wrong value[%d %s]",
ret, XPUAPIErrorMsg[ret]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(masked_select, ops::MaskedSelectXPUKernel<float>,
ops::MaskedSelectXPUKernel<int>,
ops::MaskedSelectXPUKernel<int64_t>);
#endif
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/where_index_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class WhereIndexXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* condition = context.Input<framework::Tensor>("Condition");
auto* out = context.Output<framework::Tensor>("Out");
const T* cond_data = condition->data<T>();
auto numel = condition->numel();
auto dims = condition->dims();
const int rank = dims.size();
auto& dev_ctx =
context.template device_context<paddle::platform::XPUDeviceContext>();
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
int* true_num = RAII_GUARD.alloc_l3_or_gm<int32_t>(1);
int true_num_cpu;
int ret =
xpu::nonzero_count(dev_ctx.x_context(), cond_data, true_num, numel);
PADDLE_ENFORCE_EQ(
ret, XPU_SUCCESS,
platform::errors::External(
"XPU nonzero_count kernel return wrong value[%d %s] in WhereIndex",
ret, XPUAPIErrorMsg[ret]));
if (dev_ctx.x_context()->xpu_stream) {
dev_ctx.Wait();
}
ret = xpu_memcpy(static_cast<void*>(&true_num_cpu),
static_cast<const void*>(true_num), sizeof(int32_t),
XPU_DEVICE_TO_HOST);
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
platform::errors::External("XPU xpu_memcpy return wrong "
"value[%d %s]",
ret, XPUAPIErrorMsg[ret]));
out->Resize(
framework::make_ddim({static_cast<int64_t>(true_num_cpu), rank}));
auto out_data = out->mutable_data<int64_t>(context.GetPlace());
if (true_num_cpu == 0) {
return;
}
auto condition_shape = framework::vectorize<int>(dims);
ret = xpu::where(dev_ctx.x_context(), cond_data, out_data, condition_shape,
true_num_cpu);
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
platform::errors::External(
"XPU masked_select kernel return wrong value[%d %s]",
ret, XPUAPIErrorMsg[ret]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(where_index, ops::WhereIndexXPUKernel<int>,
ops::WhereIndexXPUKernel<bool>,
ops::WhereIndexXPUKernel<float>);
#endif
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/where_op.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class WhereXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* condition = context.Input<framework::Tensor>("Condition");
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Input<framework::Tensor>("Y");
auto* out = context.Output<framework::Tensor>("Out");
const bool* cond_data = condition->data<bool>();
const T* x_data = X->data<T>();
const T* y_data = Y->data<T>();
T* out_data = out->mutable_data<T>(context.GetPlace());
auto cond_dims = framework::vectorize<int>(condition->dims());
auto input_dims = framework::vectorize<int>(X->dims());
auto& dev_ctx = context.template device_context<DeviceContext>();
int ret = xpu::select(dev_ctx.x_context(), cond_data, x_data, y_data,
out_data, cond_dims, input_dims);
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
platform::errors::External(
"XPU select kernel return wrong value[%d %s]", ret,
XPUAPIErrorMsg[ret]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
where, ops::WhereXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::WhereXPUKernel<paddle::platform::XPUDeviceContext, int>,
ops::WhereXPUKernel<paddle::platform::XPUDeviceContext, int64_t>);
#endif
...@@ -261,8 +261,17 @@ XPUOpMap& get_kl2_ops() { ...@@ -261,8 +261,17 @@ XPUOpMap& get_kl2_ops() {
{"tile", XPUKernelSet({pOpKernelType(vartype::INT32, XPUPlace()), {"tile", XPUKernelSet({pOpKernelType(vartype::INT32, XPUPlace()),
pOpKernelType(vartype::INT64, XPUPlace()), pOpKernelType(vartype::INT64, XPUPlace()),
pOpKernelType(vartype::BOOL, XPUPlace()), pOpKernelType(vartype::BOOL, XPUPlace()),
pOpKernelType(vartype::FP32, XPUPlace())})} pOpKernelType(vartype::FP32, XPUPlace())})},
{"where", XPUKernelSet({pOpKernelType(vartype::INT32, XPUPlace()),
pOpKernelType(vartype::INT64, XPUPlace()),
pOpKernelType(vartype::FP32, XPUPlace())})},
{"where_index", XPUKernelSet({pOpKernelType(vartype::INT32, XPUPlace()),
pOpKernelType(vartype::BOOL, XPUPlace()),
pOpKernelType(vartype::FP32, XPUPlace())})},
{"masked_select",
XPUKernelSet({pOpKernelType(vartype::INT32, XPUPlace()),
pOpKernelType(vartype::INT64, XPUPlace()),
pOpKernelType(vartype::FP32, XPUPlace())})}
// AddMore // AddMore
}; };
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
from op_test_xpu import XPUOpTest
import paddle
import paddle.fluid as fluid
paddle.enable_static()
def np_masked_select(x, mask):
result = np.empty(shape=(0), dtype=x.dtype)
for ele, ma in zip(np.nditer(x), np.nditer(mask)):
if ma:
result = np.append(result, ele)
return result.flatten()
class TestMaskedSelectOp(XPUOpTest):
def set_xpu(self):
self.__class__.use_xpu = True
def setUp(self):
self.set_xpu()
self.init()
self.init_dtype()
self.place = paddle.XPUPlace(0)
self.op_type = "masked_select"
x = np.random.random(self.shape).astype(self.dtype)
mask = np.array(np.random.randint(2, size=self.shape, dtype=bool))
out = np_masked_select(x, mask)
self.inputs = {'X': x, 'Mask': mask}
self.outputs = {'Y': out}
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
pass
def init(self):
self.shape = (50, 3)
def init_dtype(self):
self.dtype = np.float32
class TestMaskedSelectOp1(TestMaskedSelectOp):
def init(self):
self.shape = (6, 8, 9, 18)
class TestMaskedSelectOp2(TestMaskedSelectOp):
def init(self):
self.shape = (168, )
class TestMaskedSelectOpInt32(TestMaskedSelectOp):
def init_dtype(self):
self.dtype = np.int32
# skip_check_grad_ci(reason="get_numeric_gradient not support int32")
def test_check_grad(self):
pass
class TestMaskedSelectOpInt64(TestMaskedSelectOp):
def init_dtype(self):
self.dtype = np.int64
# skip_check_grad_ci(reason="get_numeric_gradient not support int64")
def test_check_grad(self):
pass
class TestMaskedSelectAPI(unittest.TestCase):
def test_imperative_mode(self):
paddle.disable_static(paddle.XPUPlace(0))
shape = (88, 6, 8)
np_x = np.random.random(shape).astype('float32')
np_mask = np.array(np.random.randint(2, size=shape, dtype=bool))
x = paddle.to_tensor(np_x)
mask = paddle.to_tensor(np_mask)
out = paddle.masked_select(x, mask)
np_out = np_masked_select(np_x, np_mask)
self.assertEqual(np.allclose(out.numpy(), np_out), True)
paddle.enable_static()
def test_static_mode(self):
shape = [8, 9, 6]
x = paddle.fluid.data(shape=shape, dtype='float32', name='x')
mask = paddle.fluid.data(shape=shape, dtype='bool', name='mask')
np_x = np.random.random(shape).astype('float32')
np_mask = np.array(np.random.randint(2, size=shape, dtype=bool))
out = paddle.masked_select(x, mask)
np_out = np_masked_select(np_x, np_mask)
exe = paddle.static.Executor(place=paddle.XPUPlace(0))
res = exe.run(paddle.static.default_main_program(),
feed={"x": np_x,
"mask": np_mask},
fetch_list=[out])
self.assertEqual(np.allclose(res, np_out), True)
class TestMaskedSelectError(unittest.TestCase):
def test_error(self):
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
shape = [8, 9, 6]
x = paddle.fluid.data(shape=shape, dtype='float32', name='x')
mask = paddle.fluid.data(shape=shape, dtype='bool', name='mask')
mask_float = paddle.fluid.data(
shape=shape, dtype='float32', name='mask_float')
np_x = np.random.random(shape).astype('float32')
np_mask = np.array(np.random.randint(2, size=shape, dtype=bool))
def test_x_type():
paddle.masked_select(np_x, mask)
self.assertRaises(TypeError, test_x_type)
def test_mask_type():
paddle.masked_select(x, np_mask)
self.assertRaises(TypeError, test_mask_type)
def test_mask_dtype():
paddle.masked_select(x, mask_float)
self.assertRaises(TypeError, test_mask_dtype)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import paddle
import sys
sys.path.append("..")
from op_test import OpTest
from op_test_xpu import XPUOpTest
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
paddle.enable_static()
class TestWhereIndexOp(XPUOpTest):
def setUp(self):
self.set_xpu()
self.op_type = "where_index"
self.place = paddle.XPUPlace(0)
self.init_config()
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
pass
def init_config(self):
self.inputs = {'Condition': np.array([True, False, True]), }
self.outputs = {'Out': np.array([[0], [2]], dtype='int64')}
def set_xpu(self):
self.__class__.use_xpu = True
class TestNotBool(TestWhereIndexOp):
def init_config(self):
self.inputs = {'Condition': np.array([1, 0, 8]), }
self.outputs = {'Out': np.array([[0], [2]], dtype='int64')}
class TestAllFalse(TestWhereIndexOp):
def init_config(self):
self.inputs = {'Condition': np.array([False, False, False]), }
self.outputs = {'Out': np.array([], dtype='int64')}
class TestRank2(TestWhereIndexOp):
def init_config(self):
self.inputs = {'Condition': np.array([[True, False], [False, True]]), }
self.outputs = {'Out': np.array([[0, 0], [1, 1]], dtype='int64')}
class TestRank3(TestWhereIndexOp):
def init_config(self):
self.inputs = {
'Condition': np.array([[[True, False], [False, True]],
[[False, True], [True, False]],
[[False, False], [False, True]]]),
}
self.outputs = {
'Out': np.array(
[[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0], [2, 1, 1]],
dtype='int64')
}
class TestWhereOpError(unittest.TestCase):
def test_api(self):
with program_guard(Program(), Program()):
cond = fluid.layers.data(name='cond', shape=[4], dtype='bool')
result = fluid.layers.where(cond)
exe = fluid.Executor(paddle.XPUPlace(0))
exe.run(fluid.default_startup_program())
cond_i = np.array([True, False, False, False]).astype("bool")
out = exe.run(fluid.default_main_program(), feed={'cond': cond_i})
class TestWhereRaiseError(unittest.TestCase):
def test_errors(self):
def test_type():
fluid.layers.where([10])
self.assertRaises(TypeError, test_type)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function, division
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
from op_test_xpu import XPUOpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program
from paddle.fluid.backward import append_backward
paddle.enable_static()
class TestXPUWhereOp(XPUOpTest):
def setUp(self):
self.op_type = "where"
self.set_xpu()
self.init_config()
self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
self.outputs = {'Out': np.where(self.cond, self.x, self.y)}
def init_config(self):
self.x = np.random.uniform(-3, 5, (100)).astype("float32")
self.y = np.random.uniform(-3, 5, (100)).astype("float32")
self.cond = np.zeros((100)).astype("bool")
def set_xpu(self):
self.__class__.use_xpu = True
self.place = paddle.XPUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['X', 'Y'], 'Out')
class TestXPUWhereOp2(TestXPUWhereOp):
def init_config(self):
self.x = np.random.uniform(-5, 5, (60, 2)).astype("float32")
self.y = np.random.uniform(-5, 5, (60, 2)).astype("float32")
self.cond = np.ones((60, 2)).astype("bool")
class TestXPUWhereOp3(TestXPUWhereOp):
def init_config(self):
self.x = np.random.uniform(-3, 5, (20, 2, 4)).astype("float32")
self.y = np.random.uniform(-3, 5, (20, 2, 4)).astype("float32")
self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)
class TestXPUWhereAPI(unittest.TestCase):
def setUp(self):
self.__class__.use_xpu = True
self.place = paddle.XPUPlace(0)
self.init_data()
def init_data(self):
self.shape = [10, 15]
self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
self.x = np.random.uniform(-2, 3, self.shape).astype(np.float32)
self.y = np.random.uniform(-2, 3, self.shape).astype(np.float32)
self.out = np.where(self.cond, self.x, self.y)
def ref_x_backward(self, dout):
return np.where(self.cond == True, dout, 0)
def ref_y_backward(self, dout):
return np.where(self.cond == False, dout, 0)
def test_api(self):
for x_stop_gradient in [False, True]:
for y_stop_gradient in [False, True]:
train_prog = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train_prog, startup):
cond = fluid.data(
name='cond', shape=self.shape, dtype='bool')
x = fluid.data(name='x', shape=self.shape, dtype='float32')
y = fluid.data(name='y', shape=self.shape, dtype='float32')
x.stop_gradient = x_stop_gradient
y.stop_gradient = y_stop_gradient
result = paddle.where(cond, x, y)
append_backward(fluid.layers.mean(result))
exe = fluid.Executor(self.place)
exe.run(startup)
fetch_list = [result, result.grad_name]
if x_stop_gradient is False:
fetch_list.append(x.grad_name)
if y_stop_gradient is False:
fetch_list.append(y.grad_name)
out = exe.run(
train_prog,
feed={'cond': self.cond,
'x': self.x,
'y': self.y},
fetch_list=fetch_list)
assert np.array_equal(out[0], self.out)
if x_stop_gradient is False:
assert np.array_equal(out[2],
self.ref_x_backward(out[1]))
if y.stop_gradient is False:
assert np.array_equal(out[3],
self.ref_y_backward(out[1]))
elif y.stop_gradient is False:
assert np.array_equal(out[2],
self.ref_y_backward(out[1]))
def test_api_broadcast(self, use_cuda=False):
train_prog = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train_prog, startup):
x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype("float32")
y_i = np.array([[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0]]).astype("float32")
result = paddle.where(x > 1, x=x, y=y)
exe = fluid.Executor(self.place)
exe.run(startup)
out = exe.run(train_prog,
feed={'x': x_i,
'y': y_i},
fetch_list=[result])
assert np.array_equal(out[0], np.where(x_i > 1, x_i, y_i))
class TestWhereDygraphAPI(unittest.TestCase):
def test_api(self):
with fluid.dygraph.guard(paddle.XPUPlace(0)):
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
cond_i = np.array([False, False, True, True]).astype("bool")
x = fluid.dygraph.to_variable(x_i)
y = fluid.dygraph.to_variable(y_i)
cond = fluid.dygraph.to_variable(cond_i)
out = paddle.where(cond, x, y)
assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册