Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f45818e7
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f45818e7
编写于
4月 13, 2018
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
create new varible in scope
上级
6e735e1e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
41 addition
and
17 deletion
+41
-17
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-0
python/paddle/fluid/inference_transpiler.py
python/paddle/fluid/inference_transpiler.py
+35
-13
python/paddle/fluid/tests/book/test_image_classification.py
python/paddle/fluid/tests/book/test_image_classification.py
+5
-4
未找到文件。
python/paddle/fluid/__init__.py
浏览文件 @
f45818e7
...
@@ -67,6 +67,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + [
...
@@ -67,6 +67,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + [
'clip'
,
'clip'
,
'SimpleDistributeTranspiler'
,
'SimpleDistributeTranspiler'
,
'DistributeTranspiler'
,
'DistributeTranspiler'
,
'InferenceTranspiler'
,
'memory_optimize'
,
'memory_optimize'
,
'release_memory'
,
'release_memory'
,
'profiler'
,
'profiler'
,
...
...
python/paddle/fluid/inference_transpiler.py
浏览文件 @
f45818e7
...
@@ -21,7 +21,20 @@ from . import core
...
@@ -21,7 +21,20 @@ from . import core
class
InferenceTranspiler
:
class
InferenceTranspiler
:
def
transpile
(
self
,
program
,
scope
,
place
):
def
transpile
(
self
,
program
,
scope
,
place
):
'''
'''
Transpile the program to a inference program by fused batch normalization.
Transpile the program. Support only fuse batch normalization now.
:param program: program to transpile
:type program: Program
:param scope: inference scope
:type scope: Scope
:param place: inference place
:type place: Place
'''
self
.
fuse_batch_norm
(
program
,
scope
,
place
)
def
fuse_batch_norm
(
self
,
program
,
scope
,
place
):
'''
Transpile the program by fused batch normalization.
The batch normalization followed the convolution or fully connected layer
The batch normalization followed the convolution or fully connected layer
can be integrated with them. Doing so will give us a forward acceleration,
can be integrated with them. Doing so will give us a forward acceleration,
...
@@ -57,8 +70,6 @@ class InferenceTranspiler:
...
@@ -57,8 +70,6 @@ class InferenceTranspiler:
:type scope: Scope
:type scope: Scope
:param place: inference place
:param place: inference place
:type place: Place
:type place: Place
:return: program by fused batch normalization
:rtype: Program
'''
'''
self
.
scope
=
scope
self
.
scope
=
scope
self
.
place
=
place
self
.
place
=
place
...
@@ -96,7 +107,7 @@ class InferenceTranspiler:
...
@@ -96,7 +107,7 @@ class InferenceTranspiler:
# TODO(luotao): use clone() method to flush the program.desc in force,
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
# And a better solution will be considered later.
return
program
.
clone
()
program
=
program
.
clone
()
# ====================== private transpiler functions =====================
# ====================== private transpiler functions =====================
def
_insert_bias_op
(
self
,
index
,
current_op
,
bn_op
):
def
_insert_bias_op
(
self
,
index
,
current_op
,
bn_op
):
...
@@ -142,11 +153,25 @@ class InferenceTranspiler:
...
@@ -142,11 +153,25 @@ class InferenceTranspiler:
:type with_bias: Int
:type with_bias: Int
'''
'''
def
_load_tensor
(
param_name
):
def
_update_param
(
op
,
old_param_name
,
new_param
):
return
self
.
scope
.
find_var
(
param_name
[
0
]).
get_tensor
()
# For the sake of remaining the original variables the same as before,
# create new variables in scope to store the new parameters.
old_param_name
=
old_param_name
[
0
]
old_var
=
self
.
block
.
vars
[
old_param_name
]
new_param_name
=
old_param_name
+
'_fuse_bn'
new_var
=
self
.
block
.
create_parameter
(
name
=
new_param_name
.
encode
(
'ascii'
),
type
=
old_var
.
type
,
dtype
=
old_var
.
dtype
,
shape
=
old_var
.
shape
)
op
.
rename_input
(
old_param_name
,
new_param_name
)
self
.
scope
.
var
(
new_param_name
)
tensor
=
self
.
scope
.
find_var
(
new_param_name
).
get_tensor
()
tensor
.
set
(
np
.
array
(
new_param
),
self
.
place
)
def
_load_param
(
param_name
):
def
_load_param
(
param_name
):
return
np
.
array
(
_load_tensor
(
param_name
))
return
np
.
array
(
self
.
scope
.
find_var
(
param_name
[
0
]).
get_tensor
(
))
bias_bn
=
_load_param
(
bn_op
.
input
(
"Bias"
))
#Bias
bias_bn
=
_load_param
(
bn_op
.
input
(
"Bias"
))
#Bias
scale_bn
=
_load_param
(
bn_op
.
input
(
"Scale"
))
#Scale
scale_bn
=
_load_param
(
bn_op
.
input
(
"Scale"
))
#Scale
...
@@ -155,8 +180,6 @@ class InferenceTranspiler:
...
@@ -155,8 +180,6 @@ class InferenceTranspiler:
# TODO(luotao1): consider only conv2d now. fc would be delt later.
# TODO(luotao1): consider only conv2d now. fc would be delt later.
current_param
=
_load_param
(
current_op
.
input
(
"Filter"
))
current_param
=
_load_param
(
current_op
.
input
(
"Filter"
))
current_tensor
=
_load_tensor
(
current_op
.
input
(
"Filter"
))
std_bn
=
np
.
float32
(
np
.
sqrt
(
np
.
add
(
var_bn
,
1e-5
)))
std_bn
=
np
.
float32
(
np
.
sqrt
(
np
.
add
(
var_bn
,
1e-5
)))
tmp
=
np
.
float32
(
np
.
divide
(
scale_bn
,
std_bn
))
tmp
=
np
.
float32
(
np
.
divide
(
scale_bn
,
std_bn
))
...
@@ -167,8 +190,6 @@ class InferenceTranspiler:
...
@@ -167,8 +190,6 @@ class InferenceTranspiler:
bias
=
np
.
zeros
(
bias_bn
.
shape
)
bias
=
np
.
zeros
(
bias_bn
.
shape
)
bias
=
np
.
float32
(
bias
=
np
.
float32
(
np
.
add
(
np
.
multiply
(
np
.
subtract
(
bias
,
mean_bn
),
tmp
),
bias_bn
))
np
.
add
(
np
.
multiply
(
np
.
subtract
(
bias
,
mean_bn
),
tmp
),
bias_bn
))
bias_tensor
=
_load_tensor
(
bias_op
.
input
(
"Y"
))
bias_tensor
.
set
(
bias
,
self
.
place
)
# re-compute weight of conv2d
# re-compute weight of conv2d
tmp
=
tmp
.
reshape
(
tmp
.
shape
[
0
],
-
1
)
tmp
=
tmp
.
reshape
(
tmp
.
shape
[
0
],
-
1
)
...
@@ -176,8 +197,9 @@ class InferenceTranspiler:
...
@@ -176,8 +197,9 @@ class InferenceTranspiler:
dst_param
=
np
.
float32
(
np
.
multiply
(
dst_param
,
tmp
))
dst_param
=
np
.
float32
(
np
.
multiply
(
dst_param
,
tmp
))
dst_param
=
dst_param
.
reshape
(
current_param
.
shape
)
dst_param
=
dst_param
.
reshape
(
current_param
.
shape
)
# set the updated parameters
# update parameters
current_tensor
.
set
(
np
.
array
(
dst_param
),
self
.
place
)
_update_param
(
current_op
,
current_op
.
input
(
"Filter"
),
dst_param
)
_update_param
(
bias_op
,
bias_op
.
input
(
"Y"
),
bias
)
# collect the renamed input
# collect the renamed input
self
.
input_map
[
bn_op
.
output
(
"Y"
)[
0
]]
=
bias_op
.
output
(
"Out"
)[
0
]
self
.
input_map
[
bn_op
.
output
(
"Y"
)[
0
]]
=
bias_op
.
output
(
"Out"
)[
0
]
...
...
python/paddle/fluid/tests/book/test_image_classification.py
浏览文件 @
f45818e7
...
@@ -226,16 +226,17 @@ def infer(use_cuda, save_dirname=None):
...
@@ -226,16 +226,17 @@ def infer(use_cuda, save_dirname=None):
batch_size
=
1
batch_size
=
1
tensor_img
=
numpy
.
random
.
rand
(
batch_size
,
3
,
32
,
32
).
astype
(
"float32"
)
tensor_img
=
numpy
.
random
.
rand
(
batch_size
,
3
,
32
,
32
).
astype
(
"float32"
)
# Use inference_transpiler to speedup
inference_transpiler_program
=
inference_program
.
clone
()
t
=
fluid
.
InferenceTranspiler
()
t
.
transpile
(
inference_transpiler_program
,
inference_scope
,
place
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
fetch_list
=
fetch_targets
)
fetch_list
=
fetch_targets
)
# Use inference_transpiler to speedup
t
=
fluid
.
InferenceTranspiler
()
inference_transpiler_program
=
t
.
transpile
(
inference_program
,
inference_scope
,
place
)
transpiler_results
=
exe
.
run
(
inference_transpiler_program
,
transpiler_results
=
exe
.
run
(
inference_transpiler_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
fetch_list
=
fetch_targets
)
fetch_list
=
fetch_targets
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录