Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f40110a8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f40110a8
编写于
8月 21, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add simnet bow unittest
上级
225863c9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
216 addition
and
0 deletion
+216
-0
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
+216
-0
未找到文件。
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
0 → 100644
浏览文件 @
f40110a8
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
math
import
random
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
DTYPE
=
"float32"
# For Net
base_lr
=
0.005
emb_lr
=
base_lr
*
3
dict_dim
=
1451594
emb_dim
=
128
hid_dim
=
128
margin
=
0.1
batch_size
=
128
sample_rate
=
1
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
def
get_acc
(
cos_q_nt
,
cos_q_pt
):
cond
=
fluid
.
layers
.
less_than
(
cos_q_nt
,
cos_q_pt
)
cond
=
fluid
.
layers
.
cast
(
cond
,
dtype
=
'float64'
)
cond_3
=
fluid
.
layers
.
reduce_sum
(
cond
)
acc
=
fluid
.
layers
.
elementwise_div
(
cond_3
,
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
value
=
batch_size
*
1.0
,
dtype
=
'float64'
),
name
=
"simnet_acc"
)
return
acc
def
get_loss
(
cos_q_pt
,
cos_q_nt
):
loss_op1
=
fluid
.
layers
.
elementwise_sub
(
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
cos_q_pt
,
shape
=
[
-
1
,
1
],
value
=
margin
,
dtype
=
'float32'
),
cos_q_pt
)
loss_op2
=
fluid
.
layers
.
elementwise_add
(
loss_op1
,
cos_q_nt
)
loss_op3
=
fluid
.
layers
.
elementwise_max
(
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
loss_op2
,
shape
=
[
-
1
,
1
],
value
=
0.0
,
dtype
=
'float32'
),
loss_op2
)
avg_cost
=
fluid
.
layers
.
mean
(
loss_op3
)
return
avg_cost
def
get_optimizer
():
# SGD optimizer
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
base_lr
)
return
optimizer
def
train_network
():
# query
q
=
fluid
.
layers
.
data
(
name
=
"query_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
## embedding
q_emb
=
fluid
.
layers
.
embedding
(
input
=
q
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
is_sparse
=
True
)
## vsum
q_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
q_emb
,
pool_type
=
'sum'
)
q_ss
=
fluid
.
layers
.
softsign
(
q_sum
)
## fc layer after conv
q_fc
=
fluid
.
layers
.
fc
(
input
=
q_ss
,
size
=
hid_dim
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"__q_fc__"
,
learning_rate
=
base_lr
))
# label data
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
# pt
pt
=
fluid
.
layers
.
data
(
name
=
"pos_title_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
## embedding
pt_emb
=
fluid
.
layers
.
embedding
(
input
=
pt
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
is_sparse
=
True
)
## vsum
pt_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
pt_emb
,
pool_type
=
'sum'
)
pt_ss
=
fluid
.
layers
.
softsign
(
pt_sum
)
## fc layer
pt_fc
=
fluid
.
layers
.
fc
(
input
=
pt_ss
,
size
=
hid_dim
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"__fc__"
,
learning_rate
=
base_lr
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"__fc_b__"
))
# nt
nt
=
fluid
.
layers
.
data
(
name
=
"neg_title_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
## embedding
nt_emb
=
fluid
.
layers
.
embedding
(
input
=
nt
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
is_sparse
=
True
)
## vsum
nt_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
nt_emb
,
pool_type
=
'sum'
)
nt_ss
=
fluid
.
layers
.
softsign
(
nt_sum
)
## fc layer
nt_fc
=
fluid
.
layers
.
fc
(
input
=
nt_ss
,
size
=
hid_dim
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"__fc__"
,
learning_rate
=
base_lr
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"__fc_b__"
))
cos_q_pt
=
fluid
.
layers
.
cos_sim
(
q_fc
,
pt_fc
)
cos_q_nt
=
fluid
.
layers
.
cos_sim
(
q_fc
,
nt_fc
)
# loss
avg_cost
=
get_loss
(
cos_q_pt
,
cos_q_nt
)
# acc
acc
=
get_acc
(
cos_q_nt
,
cos_q_pt
)
return
[
avg_cost
,
acc
,
cos_q_pt
]
def
combination
(
x
,
y
):
res
=
[[[
xi
,
yi
]
for
yi
in
y
]
for
xi
in
x
]
return
res
[
0
]
def
get_one_data
(
file_list
):
for
file
in
file_list
:
contents
=
[]
with
open
(
file
,
"r"
)
as
fin
:
for
i
in
fin
:
contents
.
append
(
i
.
strip
())
random
.
shuffle
(
contents
)
for
index
,
q
in
enumerate
(
contents
):
try
:
one_data
=
[[
int
(
j
)
for
j
in
i
.
split
(
" "
)]
for
i
in
q
.
split
(
";"
)[:
-
1
]]
if
one_data
[
1
][
0
]
+
one_data
[
1
][
1
]
!=
len
(
one_data
)
-
3
:
q
=
fin
.
readline
()
continue
tmp
=
combination
(
one_data
[
3
:
3
+
one_data
[
1
][
0
]],
one_data
[
3
+
one_data
[
1
][
0
]:])
except
Exception
as
e
:
continue
for
each
in
tmp
:
yield
[
one_data
[
2
],
each
[
0
],
each
[
1
],
[
0
]]
def
get_batch_reader
(
file_list
):
def
batch_reader
():
res
=
[]
for
i
in
get_one_data
(
file_list
):
if
random
.
random
()
<=
sample_rate
:
res
.
append
(
i
)
if
len
(
res
)
>=
batch_size
:
yield
res
res
=
[]
return
batch_reader
def
get_train_reader
():
# The training data set.
train_reader
=
get_batch_reader
(
"sample"
)
train_feed
=
[
"query_ids"
,
"pos_title_ids"
,
"neg_title_ids"
,
"label"
]
return
train_reader
,
train_feed
class
TestDistSimnetBow2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
# Train program
avg_cost
,
acc
,
predict
=
train_network
()
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
get_optimizer
(
learning_rate
=
0.001
)
opt
.
minimize
(
avg_cost
)
# Reader
train_reader
,
_
=
get_train_reader
()
return
inference_program
,
avg_cost
,
train_reader
,
_
,
acc
,
predict
if
__name__
==
"__main__"
:
runtime_main
(
TestDistSimnetBow2x2
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录