Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f2ccef26
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f2ccef26
编写于
10月 23, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add sequence_conv_op
上级
0ab2c436
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
158 addition
and
384 deletion
+158
-384
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+4
-1
paddle/operators/sequence_conv_op.cc
paddle/operators/sequence_conv_op.cc
+54
-43
paddle/operators/sequence_conv_op.cu
paddle/operators/sequence_conv_op.cu
+4
-5
paddle/operators/sequence_conv_op.h
paddle/operators/sequence_conv_op.h
+96
-123
python/paddle/v2/framework/tests/test_seq_project.py
python/paddle/v2/framework/tests/test_seq_project.py
+0
-212
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
f2ccef26
...
...
@@ -115,7 +115,8 @@ set(DEPS_OPS
softmax_with_cross_entropy_op
sum_op
pool_op
pool_with_index_op
)
pool_with_index_op
sequence_conv_op
)
op_library
(
recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
...
...
@@ -126,6 +127,8 @@ op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax)
op_library
(
sum_op DEPS net_op
)
op_library
(
pool_op DEPS pooling
)
op_library
(
pool_with_index_op DEPS pooling
)
op_library
(
sequence_conv_op DEPS sequence_project
)
list
(
REMOVE_ITEM GENERAL_OPS
${
DEPS_OPS
}
)
foreach
(
src
${
GENERAL_OPS
}
)
...
...
paddle/operators/sequence_
project
_op.cc
→
paddle/operators/sequence_
conv
_op.cc
浏览文件 @
f2ccef26
...
...
@@ -12,34 +12,41 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_
project
_op.h"
#include "paddle/operators/sequence_
conv
_op.h"
namespace
paddle
{
namespace
operators
{
class
Sequence
Project
Op
:
public
framework
::
OperatorWithKernel
{
class
Sequence
Conv
Op
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequenceProjectOp should not be null."
);
"Input(X) of SequenceConvOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Filter"
),
"Input(Filter) of SequenceConvOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of Sequence
Project
Op should not be null."
);
"Output(Out) of Sequence
Conv
Op should not be null."
);
// PaddingData mast be not empty. Otherwise(EnforceNotMet: enforce numel() >
// 0 failed, 0 <= 0)
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PaddingData"
),
"Input(PaddingData) of SequenceProjectOp should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE
(
in_dims
.
size
()
==
2
,
"Input(X) should be 2-D tensor."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PaddingData"
),
"Input(PaddingData) of SequenceConvOp should not be null."
);
int
context_length
=
ctx
->
Attrs
().
Get
<
int
>
(
"context_length"
);
bool
padding_trainable
=
ctx
->
Attrs
().
Get
<
bool
>
(
"padding_trainable"
);
int
context_start
=
ctx
->
Attrs
().
Get
<
int
>
(
"context_start"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
PADDLE_ENFORCE
(
in_dims
.
size
()
==
2
&&
filter_dims
.
size
()
==
2
,
"Input(X, Filter) should be 2-D tensor."
);
PADDLE_ENFORCE
(
filter_dims
[
0
]
==
context_length
&&
filter_dims
[
1
]
==
in_dims
[
1
],
"Filter's shape should be (context_length x "
"number_of_input_features)."
);
if
(
padding_trainable
)
{
framework
::
DDim
padding_dim
=
ctx
->
GetInputDim
(
"PaddingData"
);
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
...
...
@@ -60,12 +67,12 @@ class SequenceProjectOp : public framework::OperatorWithKernel {
"and 'context_length'."
);
}
in_dims
[
1
]
=
in_dims
[
1
]
*
context_length
;
in_dims
[
1
]
=
1
;
ctx
->
SetOutputDim
(
"Out"
,
in_dims
);
}
};
class
Sequence
Project
GradOp
:
public
framework
::
OperatorWithKernel
{
class
Sequence
Conv
GradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -77,60 +84,66 @@ class SequenceProjectGradOp : public framework::OperatorWithKernel {
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"padding_trainable"
)
&&
ctx
->
HasOutput
(
framework
::
GradVarName
(
"PaddingData"
)))
{
auto
padding_dims
=
ctx
->
GetInputDim
(
"PaddingData"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"PaddingData"
),
padding_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"PaddingData"
),
ctx
->
GetInputDim
(
"PaddingData"
)
);
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Filter"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Filter"
),
ctx
->
GetInputDim
(
"Filter"
));
}
}
};
class
Sequence
Project
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
Sequence
Conv
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
Sequence
Project
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
Sequence
Conv
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(A float LoDTensor) the input of Sequence
Project
Op, a vector of "
"(A float LoDTensor) the input of Sequence
Conv
Op, a vector of "
"2-D matrix of size (minibatch, number_of_input_features)."
);
AddOutput
(
"Out"
,
"(A float LoDTensor) the output of SequenceProjectOp, a vector "
"of 2-D matrix of size (minibatch, number_of_input_features x "
"context_length)."
);
AddInput
(
"PaddingData"
,
"(A float LoDTensor) the input of Sequence
Project
Op, a vector of "
"(A float LoDTensor) the input of Sequence
Conv
Op, a vector of "
"2-D matrix of size (up_pad + down_pad, "
"number_of_input_features). "
);
AddInput
(
"Filter"
,
"(A float LoDTensor) the input of SequenceConvOp, a vector of "
"2-D matrix of size (context_length x number_of_input_features)."
);
AddOutput
(
"Out"
,
"(A float LoDTensor) the output of SequenceConvOp, a vector "
"of 2-D matrix of size (minibatch, 1)."
);
AddAttr
<
bool
>
(
"padding_trainable"
,
"(bool, default false) the padding data of Sequence
Project
Op "
"(bool, default false) the padding data of Sequence
Conv
Op "
"is trainable or not."
)
.
SetDefault
(
false
);
AddAttr
<
int
>
(
"context_length"
,
"(int, default 3) the context_length of Sequence
Project
Op."
)
"(int, default 3) the context_length of Sequence
Conv
Op."
)
.
SetDefault
(
3
)
.
GreaterThan
(
0
);
AddAttr
<
int
>
(
"context_start"
,
"(int, default 0) the context_start of Sequence
Project
Op."
)
"(int, default 0) the context_start of Sequence
Conv
Op."
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"context_stride"
,
"(int, default 1) the context_stride of Sequence
Project
Op. "
"(int, default 1) the context_stride of Sequence
Conv
Op. "
"Currently, sequence_project_op only support "
"context_stride=1."
)
.
SetDefault
(
1
)
.
GreaterThan
(
0
);
AddComment
(
R"DOC(
Sequence
Project
Op projects features of context_length time-steps of each instance.
Sequence
Conv
Op projects features of context_length time-steps of each instance.
For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
Besides, for the sake of simplicity, we assume M=1 and N=2.
X = [[a1, a2
,
b1, b2
.
X = [[a1, a2
;
b1, b2
;
c1, c2]
[d1, d2]]
...
...
@@ -141,19 +154,19 @@ class SequenceProjectOpMaker : public framework::OpProtoAndCheckerMaker {
If context_start is -1 and padding_trainable is false, we use zero to pad instead of learned weight to pad,
and the context_lenth is 3, the output (Out) is:
Out =
[0, 0, a1, a2, b1, b2;
Out =
[
[0, 0, a1, a2, b1, b2;
a1, a2, b1, b2, c1, c2;
b1, b2, c1, c2, 0, 0
;
0, 0, d1, d2, 0, 0
]
b1, b2, c1, c2, 0, 0
]
[0, 0, d1, d2, 0, 0 ]
]
- Case2:
If context_start is -1 and padding_trainable is true, we use learned weight to pad,
and the context_lenth is 3, the output (Out) is:
Out = [w1, w2, a1, a2, b1, b2;
Out = [
[
w1, w2, a1, a2, b1, b2;
a1, a2, b1, b2, c1, c2;
b1, b2, c1, c2, w3, w4
;
w1, w2, d1, d2, w3, w4
]
b1, b2, c1, c2, w3, w4
]
[w1, w2, d1, d2, w3, w4]
]
)DOC"
);
}
...
...
@@ -163,13 +176,11 @@ class SequenceProjectOpMaker : public framework::OpProtoAndCheckerMaker {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sequence_project
,
ops
::
SequenceProjectOp
,
ops
::
SequenceProjectOpMaker
,
sequence_project_grad
,
ops
::
SequenceProjectGradOp
);
REGISTER_OP
(
sequence_conv
,
ops
::
SequenceConvOp
,
ops
::
SequenceConvOpMaker
,
sequence_conv_grad
,
ops
::
SequenceConvGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_project
,
ops
::
SequenceProjectKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
sequence_conv
,
ops
::
SequenceConvKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_
project
_grad
,
ops
::
Sequence
Project
GradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
sequence_
conv
_grad
,
ops
::
Sequence
Conv
GradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sequence_
project
_op.cu
→
paddle/operators/sequence_
conv
_op.cu
浏览文件 @
f2ccef26
...
...
@@ -14,12 +14,11 @@
#define EIGEN_USE_GPU
#include "paddle/operators/sequence_
project
_op.h"
#include "paddle/operators/sequence_
conv
_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
sequence_project
,
ops
::
SequenceProjectKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
sequence_conv
,
ops
::
SequenceConvKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
sequence_
project
_grad
,
ops
::
Sequence
Project
GradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
sequence_
conv
_grad
,
ops
::
Sequence
Conv
GradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/sequence_
project
_op.h
→
paddle/operators/sequence_
conv
_op.h
浏览文件 @
f2ccef26
...
...
@@ -15,46 +15,39 @@ limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/
strided_memcpy
.h"
#include "paddle/operators/
math/sequence_project
.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
//
template <typename T, int MajorType = Eigen::RowMajor,
//
typename IndexType = Eigen::DenseIndex>
//
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
Sequence
Project
Kernel
:
public
framework
::
OpKernel
<
T
>
{
class
Sequence
Conv
Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// Because if padding_trainable is false, padding data should be zeros.
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
temp
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
temp
.
constant
(
static_cast
<
T
>
(
0
));
auto
filter
=
*
context
.
Input
<
LoDTensor
>
(
"Filter"
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
(
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()
);
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
int
context_length
=
context
.
Attr
<
int
>
(
"context_length"
);
bool
padding_trainable
=
context
.
Attr
<
bool
>
(
"padding_trainable"
);
int
context_stride
=
context
.
Attr
<
int
>
(
"context_stride"
);
bool
padding_trainable
=
context
.
Attr
<
bool
>
(
"padding_trainable"
);
// InferShape by in_lod
PADDLE_ENFORCE_EQ
(
in
->
lod
().
size
(),
1UL
,
"Only support one level sequence now."
);
auto
lod_level_0
=
in
->
lod
()[
0
];
const
LoDTensor
*
padding_data
=
nullptr
;
if
(
padding_trainable
)
{
...
...
@@ -63,117 +56,51 @@ class SequenceProjectKernel : public framework::OpKernel<T> {
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
int
sequence_height
,
sequence_width
;
int
input_row_begin
,
input_row_end
;
int
sequence_width
;
sequence_width
=
static_cast
<
int
>
(
in
->
dims
()[
1
]);
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
im2col_ocf
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_level_0
.
size
())
-
1
;
++
i
)
{
input_row_begin
=
(
context_start
>
0
)
?
static_cast
<
int
>
(
lod_level_0
[
i
])
+
context_start
:
static_cast
<
int
>
(
lod_level_0
[
i
]);
input_row_end
=
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]);
Tensor
out_t
=
out
->
Slice
(
static_cast
<
int
>
(
lod_level_0
[
i
]),
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]));
sequence_height
=
static_cast
<
int
>
(
out_t
.
dims
()[
0
]);
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels, filter_height, filter_width
out_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
if
(
input_row_begin
<
input_row_end
)
{
Tensor
in_t
=
in
->
Slice
(
input_row_begin
,
input_row_end
);
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
input_row_end
-
input_row_begin
,
sequence_width
});
// input_channels, input_height, input_width
in_t
.
Resize
(
framework
::
make_ddim
(
input_shape
));
im2col_ocf
(
context
.
device_context
(),
in_t
,
out_t
,
/*stride_height*/
context_stride
,
/*stride_width*/
0
,
up_pad
,
down_pad
);
}
// use col_shape in the im2col calculation
framework
::
DDim
col_shape
=
{
in
->
dims
()[
0
],
sequence_width
*
context_length
};
LoDTensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// Because if padding_trainable is false, padding data should be zeros.
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
col
);
temp
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
temp
.
constant
(
static_cast
<
T
>
(
0
));
if
(
padding_trainable
)
{
// add up trainable data
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
paddle
::
operators
::
math
::
SequenceProjectFunctor
<
Place
,
T
>
seq_project_functor
;
if
(
up_pad
>
0
)
{
// add up pad
int
padding_rows
=
std
::
min
(
up_pad
,
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]
-
lod_level_0
[
i
])
);
seq_project_functor
(
context
.
device_context
(),
in
,
padding_data
,
&
col
,
padding_trainable
,
context_start
,
context_length
,
context_stride
,
up_pad
,
down_pad
);
for
(
int
k
=
0
;
k
<
padding_rows
;
++
k
)
{
int
padding_size
=
k
+
context_length
<
up_pad
?
context_length
:
up_pad
-
k
;
Tensor
out_t_sub
=
out_t
.
Slice
(
k
*
context_length
,
k
*
context_length
+
padding_size
);
Tensor
w_sub
=
padding_data
->
Slice
(
k
,
k
+
padding_size
);
// in this block, using EigenVector<T>::Flatten is ok too.
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
place
)
=
w_sub_e
;
}
}
if
(
down_pad
>
0
)
{
// add down pad
int
down_pad_begin_row
=
std
::
max
(
0
,
(
sequence_height
-
context_start
-
context_length
)
+
1
)
+
1
;
int
padding_begin
=
std
::
max
(
0
,
context_start
-
sequence_height
);
int
padding_size
=
sequence_height
-
context_start
>=
context_length
?
1
:
context_length
-
(
sequence_height
-
context_start
);
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
int
padding_idx
=
padding_begin
;
for
(
int
t
=
0
;
t
+
down_pad_begin_row
<=
sequence_height
;
++
t
,
++
padding_size
)
{
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
if
(
padding_size
>
context_length
)
{
padding_size
=
context_length
;
padding_idx
++
;
}
if
(
padding_begin
>
0
||
sequence_height
==
context_start
)
padding_idx
=
padding_begin
+
t
;
Tensor
out_t_sub
=
out_t
.
Slice
(
(
down_pad_begin_row
+
t
)
*
context_length
-
padding_size
,
(
down_pad_begin_row
+
t
)
*
context_length
);
Tensor
w_sub
=
padding_data
->
Slice
(
up_pad
+
padding_idx
,
up_pad
+
padding_idx
+
padding_size
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
place
)
=
w_sub_e
;
}
}
}
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
filter
.
Resize
(
framework
::
make_ddim
({
context_length
*
sequence_width
,
1
}));
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
col
,
false
,
filter
,
false
,
T
(
1.0
),
out
,
T
(
0.0
));
}
};
template
<
typename
Place
,
typename
T
>
class
Sequence
Project
GradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
Sequence
Conv
GradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
filter_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"Filter"
));
auto
*
padding_data_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"PaddingData"
));
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
filter
=
context
.
Input
<
LoDTensor
>
(
"Filter"
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
int
context_length
=
context
.
Attr
<
int
>
(
"context_length"
);
bool
padding_trainable
=
context
.
Attr
<
bool
>
(
"padding_trainable"
);
int
context_stride
=
context
.
Attr
<
int
>
(
"context_stride"
);
bool
padding_trainable
=
context
.
Attr
<
bool
>
(
"padding_trainable"
);
// InferShape by in_lod
PADDLE_ENFORCE_EQ
(
in
->
lod
().
size
(),
1UL
,
...
...
@@ -187,15 +114,31 @@ class SequenceProjectGradKernel : public framework::OpKernel<T> {
sequence_width
=
static_cast
<
int
>
(
in
->
dims
()[
1
]);
paddle
::
operators
::
math
::
Col2ImFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
col2im_ocf
;
// use col_shape in the im2col calculation
framework
::
DDim
col_shape
=
{
in
->
dims
()[
0
],
sequence_width
*
context_length
};
LoDTensor
col
;
if
(
in_g
||
filter_g
||
(
padding_trainable
&&
padding_data_g
))
{
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// Because if padding_trainable is false, padding data should be zeros.
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
col
);
temp
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
temp
.
constant
(
static_cast
<
T
>
(
0
));
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
*
out_g
,
false
,
*
filter
,
true
,
T
(
1.0
),
&
col
,
T
(
1.0
));
}
if
(
in_g
)
{
in_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
functor
;
functor
(
context
.
device_context
(),
in_g
,
0
);
paddle
::
operators
::
math
::
Col2ImFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
col2im_ocf
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_g_level_0
.
size
())
-
1
;
++
i
)
{
input_row_begin
=
(
context_start
>
0
)
...
...
@@ -203,10 +146,10 @@ class SequenceProjectGradKernel : public framework::OpKernel<T> {
:
static_cast
<
int
>
(
lod_g_level_0
[
i
]);
input_row_end
=
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]);
Tensor
out_g_t
=
out_g
->
Slice
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
Tensor
col_t
=
col
.
Slice
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
sequence_height
=
static_cast
<
int
>
(
out_g
_t
.
dims
()[
0
]);
sequence_height
=
static_cast
<
int
>
(
col
_t
.
dims
()[
0
]);
if
(
input_row_begin
<
input_row_end
)
{
Tensor
in_t
=
in_g
->
Slice
(
input_row_begin
,
input_row_end
);
...
...
@@ -214,19 +157,19 @@ class SequenceProjectGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels, filter_height, filter_width
out_g
_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
// input_channels, filter_height, filter_width
col
_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
input_row_end
-
input_row_begin
,
sequence_width
});
// input_channels, input_height, input_width
in_t
.
Resize
(
framework
::
make_ddim
(
input_shape
));
col2im_ocf
(
context
.
device_context
(),
in_t
,
out_g
_t
,
col2im_ocf
(
context
.
device_context
(),
in_t
,
col
_t
,
/*stride_height*/
context_stride
,
/*stride_width*/
0
,
up_pad
,
down_pad
);
}
out_g
_t
.
Resize
(
framework
::
make_ddim
(
col
_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
}
...
...
@@ -244,12 +187,12 @@ class SequenceProjectGradKernel : public framework::OpKernel<T> {
:
static_cast
<
int
>
(
lod_g_level_0
[
i
]);
input_row_end
=
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]);
Tensor
out_g_t
=
out_g
->
Slice
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
Tensor
col_t
=
col
.
Slice
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
sequence_height
=
static_cast
<
int
>
(
out_g
_t
.
dims
()[
0
]);
sequence_height
=
static_cast
<
int
>
(
col
_t
.
dims
()[
0
]);
out_g
_t
.
Resize
(
framework
::
make_ddim
(
col
_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
>
0
)
{
// add up pad
...
...
@@ -260,8 +203,8 @@ class SequenceProjectGradKernel : public framework::OpKernel<T> {
for
(
int
k
=
0
;
k
<
padding_rows
;
++
k
)
{
int
padding_size
=
k
+
context_length
<
up_pad
?
context_length
:
up_pad
-
k
;
Tensor
out_t_sub
=
out_g
_t
.
Slice
(
k
*
context_length
,
k
*
context_length
+
padding_size
);
Tensor
out_t_sub
=
col
_t
.
Slice
(
k
*
context_length
,
k
*
context_length
+
padding_size
);
Tensor
w_sub
=
padding_data_g
->
Slice
(
k
,
k
+
padding_size
);
// in this block, using EigenVector<T>::Flatten is ok too.
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
...
...
@@ -290,7 +233,7 @@ class SequenceProjectGradKernel : public framework::OpKernel<T> {
}
if
(
padding_begin
>
0
||
sequence_height
==
context_start
)
padding_idx
=
padding_begin
+
t
;
Tensor
out_t_sub
=
out_g
_t
.
Slice
(
Tensor
out_t_sub
=
col
_t
.
Slice
(
(
down_pad_begin_row
+
t
)
*
context_length
-
padding_size
,
(
down_pad_begin_row
+
t
)
*
context_length
);
Tensor
w_sub
=
padding_data_g
->
Slice
(
...
...
@@ -300,10 +243,40 @@ class SequenceProjectGradKernel : public framework::OpKernel<T> {
w_sub_e
.
device
(
place
)
=
w_sub_e
+
out_t_sub_e
;
}
}
out_g
_t
.
Resize
(
framework
::
make_ddim
(
col
_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
}
if
(
filter_g
)
{
filter_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
functor
;
functor
(
context
.
device_context
(),
filter_g
,
0
);
Tensor
filter_grad_
=
*
filter_g
;
Tensor
out_grad_
=
*
out_g
;
const
LoDTensor
*
padding_data
=
nullptr
;
if
(
padding_trainable
)
{
padding_data
=
context
.
Input
<
LoDTensor
>
(
"PaddingData"
);
}
sequence_width
=
static_cast
<
int
>
(
in
->
dims
()[
1
]);
paddle
::
operators
::
math
::
SequenceProjectFunctor
<
Place
,
T
>
seq_project_functor
;
seq_project_functor
(
context
.
device_context
(),
in
,
padding_data
,
&
col
,
padding_trainable
,
context_start
,
context_length
,
context_stride
,
up_pad
,
down_pad
);
filter_grad_
.
Resize
(
framework
::
make_ddim
({
context_length
*
sequence_width
,
1
}));
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
col
,
true
,
out_grad_
,
false
,
T
(
1.0
),
&
filter_grad_
,
T
(
1.0
));
}
}
};
...
...
python/paddle/v2/framework/tests/test_seq_project.py
已删除
100644 → 0
浏览文件 @
0ab2c436
import
unittest
import
numpy
as
np
import
random
from
op_test
import
OpTest
class
TestSeqProject
(
OpTest
):
def
setUp
(
self
):
self
.
init_test_case
()
self
.
op_type
=
'sequence_project'
if
self
.
context_length
==
1
and
self
.
context_start
==
0
and
self
.
padding_trainable
:
print
"If context_start is 0 and context_length is 1, padding_trainable should be false."
return
# one level, batch size
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
self
.
input_size
[
0
],
self
.
input_size
[
1
]]).
astype
(
'float32'
)
self
.
begin_pad
=
np
.
max
([
0
,
-
self
.
context_start
])
self
.
end_pad
=
np
.
max
([
0
,
self
.
context_start
+
self
.
context_length
-
1
])
self
.
total_pad
=
self
.
begin_pad
+
self
.
end_pad
if
self
.
total_pad
==
0
:
self
.
total_pad
=
1
# PaddingData mast be not empty. Otherwise(EnforceNotMet: enforce numel() > 0 failed, 0 <= 0)
padding_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
self
.
total_pad
,
self
.
input_size
[
1
]]).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
(
x
,
self
.
lod
),
'PaddingData'
:
(
padding_data
,
[[
0
,
self
.
total_pad
]])
}
self
.
attrs
=
{
'context_start'
:
self
.
context_start
,
'context_length'
:
self
.
context_length
,
'padding_trainable'
:
self
.
padding_trainable
,
'context_stride'
:
self
.
context_stride
}
out
=
np
.
zeros
((
self
.
input_size
[
0
],
self
.
input_size
[
1
]
*
self
.
context_length
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
self
.
compute
()
def
compute
(
self
):
x
,
lod
=
self
.
inputs
[
'X'
]
pading_data
,
_
=
self
.
inputs
[
'PaddingData'
]
out
=
self
.
outputs
[
'Out'
]
lod
=
lod
[
0
]
begin_pad
=
np
.
max
([
0
,
-
self
.
context_start
])
for
i
in
range
(
len
(
lod
)
-
1
):
for
j
in
range
(
self
.
context_length
):
in_begin
=
lod
[
i
]
+
self
.
context_start
+
j
in_end
=
lod
[
i
+
1
]
+
self
.
context_start
+
j
out_begin
=
lod
[
i
]
out_end
=
lod
[
i
+
1
]
if
in_begin
<
lod
[
i
]:
pad_size
=
np
.
min
([
lod
[
i
]
-
in_begin
,
lod
[
i
+
1
]
-
lod
[
i
]])
if
self
.
padding_trainable
:
sub_w
=
pading_data
[
j
:
j
+
pad_size
,
:]
out
[
lod
[
i
]:
lod
[
i
]
+
pad_size
,
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
self
.
input_size
[
1
]]
=
sub_w
out_begin
=
lod
[
i
]
+
pad_size
in_begin
=
lod
[
i
]
if
in_end
>
lod
[
i
+
1
]:
pad_size
=
np
.
min
(
[
in_end
-
lod
[
i
+
1
],
lod
[
i
+
1
]
-
lod
[
i
]])
if
self
.
padding_trainable
:
sub_w
=
pading_data
[
begin_pad
+
self
.
context_start
+
j
-
pad_size
:
begin_pad
+
self
.
context_start
+
j
,
:]
out
[
lod
[
i
+
1
]
-
pad_size
:
lod
[
i
+
1
],
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
self
.
input_size
[
1
]]
=
sub_w
in_end
=
lod
[
i
+
1
]
out_end
=
lod
[
i
+
1
]
-
pad_size
if
in_end
<=
in_begin
:
continue
in_sub
=
x
[
in_begin
:
in_end
,
:]
out
[
out_begin
:
out_end
,
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
self
.
input_size
[
1
]]
+=
in_sub
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
if
self
.
padding_trainable
:
self
.
check_grad
(
set
([
'X'
,
'PaddingData'
]),
'Out'
,
max_relative_error
=
0.05
)
def
test_check_grad_no_filter
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
([
'PaddingData'
]))
def
test_check_grad_no_input
(
self
):
if
self
.
padding_trainable
:
self
.
check_grad
(
[
'PaddingData'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
([
'X'
]))
def
init_test_case
(
self
):
self
.
op_type
=
"sequence_project"
self
.
input_row
=
11
self
.
context_start
=
0
self
.
context_length
=
1
self
.
padding_trainable
=
False
self
.
context_stride
=
1
self
.
input_size
=
[
self
.
input_row
,
23
]
self
.
lod
=
[[
0
,
4
,
5
,
8
,
self
.
input_row
]]
class
TestSeqProjectCase1
(
TestSeqProject
):
def
init_test_case
(
self
):
self
.
op_type
=
"sequence_project"
self
.
input_row
=
11
self
.
context_start
=
-
1
self
.
context_length
=
3
self
.
padding_trainable
=
True
self
.
context_stride
=
1
self
.
input_size
=
[
self
.
input_row
,
23
]
self
.
lod
=
[[
0
,
4
,
5
,
8
,
self
.
input_row
]]
class
TestSeqProjectCase2
(
TestSeqProject
):
def
init_test_case
(
self
):
self
.
op_type
=
"sequence_project"
self
.
input_row
=
25
self
.
context_start
=
2
self
.
context_length
=
3
self
.
padding_trainable
=
True
self
.
context_stride
=
1
self
.
input_size
=
[
self
.
input_row
,
23
]
idx
=
range
(
self
.
input_size
[
0
])
del
idx
[
0
]
self
.
lod
=
[[
0
]
+
np
.
sort
(
random
.
sample
(
idx
,
8
)).
tolist
()
+
[
self
.
input_size
[
0
]]]
'''
class TestSeqProjectCases(TestSeqProject):
def setUp(self):
self.init_test_case()
self.op_type = 'sequence_project'
num = 0
for context_start in [-5, -3, -1, 0, 3]:
for context_length in [1, 2, 5, 7]:
for batch_size in [1, 2, 5, 7]:
for padding_trainable in [False, True]:
if context_length == 1 and context_start == 0 and padding_trainable:
continue
self.context_start = context_start
self.context_length = context_length
self.padding_trainable = padding_trainable
self.input_size = [batch_size, 23]
x = np.random.uniform(0.1, 1,
self.input_size).astype('float32')
self.lod = [[0, self.input_size[0]]]
if self.input_size[0] > 2:
idx = range(self.input_size[0])
del idx[0]
self.lod = [
[0] + np.sort(random.sample(idx, 2)).tolist() +
[self.input_size[0]]
]
self.begin_pad = np.max([0, -self.context_start])
self.end_pad = np.max([0, self.context_start + self.context_length - 1])
self.total_pad = self.begin_pad + self.end_pad
if self.total_pad == 0:
self.total_pad = 1
# PaddingData mast be not empty. Otherwise(EnforceNotMet: enforce numel() > 0 failed, 0 <= 0)
padding_data = np.random.uniform(
0.1, 1, [self.total_pad, self.input_size[1]]).astype('float32')
self.inputs = {
'X': (x, self.lod),
'PaddingData': (padding_data, [[0, self.total_pad]])
}
self.attrs = {
'context_start': self.context_start,
'context_length': self.context_length,
'padding_trainable': self.padding_trainable,
'context_stride': self.context_stride
}
out = np.zeros((self.input_size[0], self.input_size[1] *
self.context_length)).astype('float32')
self.outputs = {'Out': out}
print num
print self.attrs
print batch_size
print padding_trainable
print "$$$$$$$$$$$$$"
self.compute()
self.test_check_output()
num += 1
'''
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录