Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f2a3405f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f2a3405f
编写于
1月 12, 2022
作者:
J
JingZhuangzhuang
提交者:
GitHub
1月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix save inference model conditional op (#37579) (#38739)
上级
5925b82e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
167 addition
and
25 deletion
+167
-25
paddle/fluid/framework/prune.cc
paddle/fluid/framework/prune.cc
+19
-25
python/paddle/fluid/tests/unittests/test_save_inference_model_conditional_op.py
...sts/unittests/test_save_inference_model_conditional_op.py
+148
-0
未找到文件。
paddle/fluid/framework/prune.cc
浏览文件 @
f2a3405f
...
@@ -145,6 +145,23 @@ int FindMapByValue(const std::map<int, int>& m, int val) {
...
@@ -145,6 +145,23 @@ int FindMapByValue(const std::map<int, int>& m, int val) {
return
-
1
;
return
-
1
;
}
}
// In other two cases,the op that has feed vars as output vars is dependent:
// 1. op has subblock, like while/for/ifelse/recurrent
// 2. op is in subblock
bool
IsSubBlockDependent
(
const
proto
::
OpDesc
&
op_desc
,
const
std
::
set
<
std
::
string
>&
feed_vars
,
int
parent_block_id
)
{
for
(
auto
&
var
:
op_desc
.
outputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
if
((
HasSubBlock
(
op_desc
)
||
parent_block_id
!=
-
1
)
&&
feed_vars
.
count
(
argu
)
!=
0
)
{
return
true
;
}
}
}
return
false
;
}
// block_id is the idx of the current block in the input desc
// block_id is the idx of the current block in the input desc
// parent_block_id is the idx of the parent of the current block
// parent_block_id is the idx of the parent of the current block
// in the output desc, -1 means the current block is global block
// in the output desc, -1 means the current block is global block
...
@@ -210,7 +227,8 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
...
@@ -210,7 +227,8 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
// }
// }
if
(
IsTarget
(
op_desc
)
||
if
(
IsTarget
(
op_desc
)
||
(
HasDependentOutputVar
(
op_desc
,
*
dependent_vars
)
&&
((
HasDependentOutputVar
(
op_desc
,
*
dependent_vars
)
||
(
IsSubBlockDependent
(
op_desc
,
feed_var_names
,
parent_block_id
)))
&&
(
GetOpRole
(
op_desc
)
&
static_cast
<
int
>
(
OpRole
::
kOptimize
))
==
0
))
{
(
GetOpRole
(
op_desc
)
&
static_cast
<
int
>
(
OpRole
::
kOptimize
))
==
0
))
{
// NOTE(zhiqiu): since optimize op takes the trainable parameters as
// NOTE(zhiqiu): since optimize op takes the trainable parameters as
// inputs and output, it may introduce wrong dependency graph.
// inputs and output, it may introduce wrong dependency graph.
...
@@ -227,30 +245,6 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
...
@@ -227,30 +245,6 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
should_run
.
push_back
(
true
);
should_run
.
push_back
(
true
);
}
else
{
}
else
{
should_run
.
push_back
(
false
);
should_run
.
push_back
(
false
);
// If the output of an op modifies feed vars, the op should not clip.
// For example, in the transformer structure, the third parameter returned
// by beam_search op is generally assigned to a feed var. Cutting the
// assign op will cause an error.
if
(
parent_block_id
!=
-
1
)
{
bool
flag
=
false
;
for
(
auto
&
var
:
op_desc
.
outputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
if
(
feed_var_names
.
count
(
argu
))
{
flag
=
true
;
}
}
}
if
(
flag
)
{
should_run
.
back
()
=
true
;
// If any op should run, then there inputs are dependent_vars
for
(
auto
&
var
:
op_desc
.
inputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
dependent_vars
->
insert
(
argu
);
}
}
}
}
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_save_inference_model_conditional_op.py
0 → 100644
浏览文件 @
f2a3405f
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
def
getModelOp
(
model_path
):
model_bytes
=
paddle
.
static
.
load_from_file
(
model_path
)
pg
=
paddle
.
static
.
deserialize_program
(
model_bytes
)
main_block
=
pg
.
desc
.
block
(
0
)
size
=
main_block
.
op_size
()
result
=
set
()
for
i
in
range
(
0
,
size
):
#print(main_block.op(i).type())
result
.
add
(
main_block
.
op
(
i
).
type
())
return
result
class
WhileNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
WhileNet
,
self
).
__init__
()
def
forward
(
self
,
x
):
y
=
paddle
.
rand
(
shape
=
[
1
,
3
,
4
,
4
])
w1
=
paddle
.
shape
(
y
)[
0
]
w2
=
paddle
.
shape
(
x
)[
0
]
while
w2
!=
w1
:
x
=
F
.
avg_pool2d
(
x
,
kernel_size
=
3
,
padding
=
1
,
stride
=
2
)
w2
=
paddle
.
shape
(
x
)[
0
]
return
x
+
y
class
ForNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
ForNet
,
self
).
__init__
()
def
forward
(
self
,
x
):
y
=
paddle
.
randint
(
low
=
0
,
high
=
5
,
shape
=
[
1
],
dtype
=
'int32'
)
z
=
paddle
.
randint
(
low
=
0
,
high
=
5
,
shape
=
[
1
],
dtype
=
'int32'
)
for
i
in
range
(
0
,
z
):
x
=
x
+
i
return
x
+
y
class
IfElseNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
IfElseNet
,
self
).
__init__
()
def
forward
(
self
,
x
):
y
=
paddle
.
to_tensor
([
5
])
if
x
>
y
:
x
=
x
+
1
else
:
x
=
x
-
1
return
x
class
TestConditionalOp
(
unittest
.
TestCase
):
def
test_while_op
(
self
):
paddle
.
disable_static
()
net
=
WhileNet
()
net
=
paddle
.
jit
.
to_static
(
net
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
1
,
3
,
8
,
8
],
dtype
=
'float32'
)
])
paddle
.
jit
.
save
(
net
,
'./while_net'
)
right_pdmodel
=
set
([
"uniform_random"
,
"shape"
,
"slice"
,
"not_equal"
,
"while"
,
"elementwise_add"
])
paddle
.
enable_static
()
pdmodel
=
getModelOp
(
"while_net.pdmodel"
)
#print(len(right_pdmodel.difference(pdmodel)))
self
.
assertTrue
(
len
(
right_pdmodel
.
difference
(
pdmodel
))
==
0
,
"The while op is pruned by mistake."
)
def
test_for_op
(
self
):
paddle
.
disable_static
()
net
=
ForNet
()
net
=
paddle
.
jit
.
to_static
(
net
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
1
],
dtype
=
'int32'
)])
paddle
.
jit
.
save
(
net
,
'./for_net'
)
right_pdmodel
=
set
([
"randint"
,
"fill_constant"
,
"cast"
,
"less_than"
,
"while"
,
"elementwise_add"
])
paddle
.
enable_static
()
pdmodel
=
getModelOp
(
"for_net.pdmodel"
)
#print(len(right_pdmodel.difference(pdmodel)))
self
.
assertTrue
(
len
(
right_pdmodel
.
difference
(
pdmodel
))
==
0
,
"The for op is pruned by mistake."
)
def
test_if_op
(
self
):
paddle
.
disable_static
()
net
=
IfElseNet
()
net
=
paddle
.
jit
.
to_static
(
net
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
1
],
dtype
=
'int32'
)])
paddle
.
jit
.
save
(
net
,
'./if_net'
)
right_pdmodel
=
set
([
"assign_value"
,
"greater_than"
,
"cast"
,
"conditional_block"
,
"logical_not"
,
"select_input"
])
paddle
.
enable_static
()
pdmodel
=
getModelOp
(
"if_net.pdmodel"
)
#print(len(right_pdmodel.difference(pdmodel)))
self
.
assertTrue
(
len
(
right_pdmodel
.
difference
(
pdmodel
))
==
0
,
"The if op is pruned by mistake."
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录