Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f0f2e2f9
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f0f2e2f9
编写于
4月 01, 2022
作者:
J
JYChen
提交者:
GitHub
4月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add notes and more cases for quantile unittest. (#41191)
* add notes for quantile UT * Supoort quantile in static-mode and add UT
上级
3b7b8528
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
90 addition
and
5 deletion
+90
-5
python/paddle/fluid/tests/unittests/test_quantile.py
python/paddle/fluid/tests/unittests/test_quantile.py
+86
-0
python/paddle/tensor/stat.py
python/paddle/tensor/stat.py
+4
-5
未找到文件。
python/paddle/fluid/tests/unittests/test_quantile.py
浏览文件 @
f0f2e2f9
...
...
@@ -20,46 +20,59 @@ import paddle
class
TestQuantile
(
unittest
.
TestCase
):
"""
This class is used for numerical precision testing. If there is
a corresponding numpy API, the precision comparison can be performed directly.
Otherwise, it needs to be verified by numpy implementated function.
"""
def
setUp
(
self
):
np
.
random
.
seed
(
678
)
self
.
input_data
=
np
.
random
.
rand
(
6
,
7
,
8
,
9
,
10
)
# Test correctness when q and axis are set.
def
test_quantile_single_q
(
self
):
x
=
paddle
.
to_tensor
(
self
.
input_data
)
paddle_res
=
paddle
.
quantile
(
x
,
q
=
0.5
,
axis
=
2
)
np_res
=
np
.
quantile
(
self
.
input_data
,
q
=
0.5
,
axis
=
2
)
self
.
assertTrue
(
np
.
allclose
(
paddle_res
.
numpy
(),
np_res
))
# Test correctness for default axis.
def
test_quantile_with_no_axis
(
self
):
x
=
paddle
.
to_tensor
(
self
.
input_data
)
paddle_res
=
paddle
.
quantile
(
x
,
q
=
0.35
)
np_res
=
np
.
quantile
(
self
.
input_data
,
q
=
0.35
)
self
.
assertTrue
(
np
.
allclose
(
paddle_res
.
numpy
(),
np_res
))
# Test correctness for multiple axis.
def
test_quantile_with_multi_axis
(
self
):
x
=
paddle
.
to_tensor
(
self
.
input_data
)
paddle_res
=
paddle
.
quantile
(
x
,
q
=
0.75
,
axis
=
[
0
,
2
,
3
])
np_res
=
np
.
quantile
(
self
.
input_data
,
q
=
0.75
,
axis
=
[
0
,
2
,
3
])
self
.
assertTrue
(
np
.
allclose
(
paddle_res
.
numpy
(),
np_res
))
# Test correctness when keepdim is set.
def
test_quantile_with_keepdim
(
self
):
x
=
paddle
.
to_tensor
(
self
.
input_data
)
paddle_res
=
paddle
.
quantile
(
x
,
q
=
0.35
,
axis
=
4
,
keepdim
=
True
)
np_res
=
np
.
quantile
(
self
.
input_data
,
q
=
0.35
,
axis
=
4
,
keepdims
=
True
)
self
.
assertTrue
(
np
.
allclose
(
paddle_res
.
numpy
(),
np_res
))
# Test correctness when all parameters are set.
def
test_quantile_with_keepdim_and_multiple_axis
(
self
):
x
=
paddle
.
to_tensor
(
self
.
input_data
)
paddle_res
=
paddle
.
quantile
(
x
,
q
=
0.1
,
axis
=
[
1
,
4
],
keepdim
=
True
)
np_res
=
np
.
quantile
(
self
.
input_data
,
q
=
0.1
,
axis
=
[
1
,
4
],
keepdims
=
True
)
self
.
assertTrue
(
np
.
allclose
(
paddle_res
.
numpy
(),
np_res
))
# Test correctness when q = 0.
def
test_quantile_with_boundary_q
(
self
):
x
=
paddle
.
to_tensor
(
self
.
input_data
)
paddle_res
=
paddle
.
quantile
(
x
,
q
=
0
,
axis
=
3
)
np_res
=
np
.
quantile
(
self
.
input_data
,
q
=
0
,
axis
=
3
)
self
.
assertTrue
(
np
.
allclose
(
paddle_res
.
numpy
(),
np_res
))
# Test correctness when input includes NaN.
def
test_quantile_include_NaN
(
self
):
input_data
=
np
.
random
.
randn
(
2
,
3
,
4
)
input_data
[
0
,
1
,
1
]
=
np
.
nan
...
...
@@ -69,6 +82,10 @@ class TestQuantile(unittest.TestCase):
class
TestQuantileMuitlpleQ
(
unittest
.
TestCase
):
"""
This class is used to test multiple input of q.
"""
def
setUp
(
self
):
np
.
random
.
seed
(
678
)
self
.
input_data
=
np
.
random
.
rand
(
10
,
3
,
4
,
5
,
4
)
...
...
@@ -95,56 +112,125 @@ class TestQuantileMuitlpleQ(unittest.TestCase):
class
TestQuantileError
(
unittest
.
TestCase
):
"""
This class is used to test that exceptions are thrown correctly.
Validity of all parameter values and types should be considered.
"""
def
setUp
(
self
):
self
.
x
=
paddle
.
randn
((
2
,
3
,
4
))
def
test_errors
(
self
):
# Test error when q > 1
def
test_q_range_error_1
():
paddle_res
=
paddle
.
quantile
(
self
.
x
,
q
=
1.5
)
self
.
assertRaises
(
ValueError
,
test_q_range_error_1
)
# Test error when q < 0
def
test_q_range_error_2
():
paddle_res
=
paddle
.
quantile
(
self
.
x
,
q
=
[
0.2
,
-
0.3
])
self
.
assertRaises
(
ValueError
,
test_q_range_error_2
)
# Test error with no valid q
def
test_q_range_error_3
():
paddle_res
=
paddle
.
quantile
(
self
.
x
,
q
=
[])
self
.
assertRaises
(
ValueError
,
test_q_range_error_3
)
# Test error when x is not Tensor
def
test_x_type_error
():
x
=
[
1
,
3
,
4
]
paddle_res
=
paddle
.
quantile
(
x
,
q
=
0.9
)
self
.
assertRaises
(
TypeError
,
test_x_type_error
)
# Test error when scalar axis is not int
def
test_axis_type_error_1
():
paddle_res
=
paddle
.
quantile
(
self
.
x
,
q
=
0.4
,
axis
=
0.4
)
self
.
assertRaises
(
ValueError
,
test_axis_type_error_1
)
# Test error when axis in List is not int
def
test_axis_type_error_2
():
paddle_res
=
paddle
.
quantile
(
self
.
x
,
q
=
0.4
,
axis
=
[
1
,
0.4
])
self
.
assertRaises
(
ValueError
,
test_axis_type_error_2
)
# Test error when axis not in [-D, D)
def
test_axis_value_error_1
():
paddle_res
=
paddle
.
quantile
(
self
.
x
,
q
=
0.4
,
axis
=
10
)
self
.
assertRaises
(
ValueError
,
test_axis_value_error_1
)
# Test error when axis not in [-D, D)
def
test_axis_value_error_2
():
paddle_res
=
paddle
.
quantile
(
self
.
x
,
q
=
0.4
,
axis
=
[
1
,
-
10
])
self
.
assertRaises
(
ValueError
,
test_axis_value_error_2
)
# Test error with no valid axis
def
test_axis_value_error_3
():
paddle_res
=
paddle
.
quantile
(
self
.
x
,
q
=
0.4
,
axis
=
[])
self
.
assertRaises
(
ValueError
,
test_axis_value_error_3
)
class
TestQuantileRuntime
(
unittest
.
TestCase
):
"""
This class is used to test the API could run correctly with
different devices, different data types, and dygraph/static mode.
"""
def
setUp
(
self
):
np
.
random
.
seed
(
678
)
self
.
input_data
=
np
.
random
.
rand
(
6
,
7
,
8
,
9
,
10
)
self
.
dtypes
=
[
'float32'
,
'float64'
]
self
.
devices
=
[
'cpu'
]
if
paddle
.
device
.
is_compiled_with_cuda
():
self
.
devices
.
append
(
'gpu'
)
def
test_dygraph
(
self
):
paddle
.
disable_static
()
for
device
in
self
.
devices
:
# Check different devices
paddle
.
set_device
(
device
)
for
dtype
in
self
.
dtypes
:
# Check different dtypes
np_input_data
=
self
.
input_data
.
astype
(
dtype
)
x
=
paddle
.
to_tensor
(
np_input_data
,
dtype
=
dtype
)
paddle_res
=
paddle
.
quantile
(
x
,
q
=
0.5
,
axis
=
2
)
np_res
=
np
.
quantile
(
np_input_data
,
q
=
0.5
,
axis
=
2
)
self
.
assertTrue
(
np
.
allclose
(
paddle_res
.
numpy
(),
np_res
))
def
test_static
(
self
):
paddle
.
enable_static
()
for
device
in
self
.
devices
:
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
self
.
input_data
.
shape
,
dtype
=
paddle
.
float32
)
x_fp64
=
paddle
.
static
.
data
(
name
=
"x_fp64"
,
shape
=
self
.
input_data
.
shape
,
dtype
=
paddle
.
float64
)
results
=
paddle
.
quantile
(
x
,
q
=
0.5
,
axis
=
2
)
np_input_data
=
self
.
input_data
.
astype
(
'float32'
)
results_fp64
=
paddle
.
quantile
(
x_fp64
,
q
=
0.5
,
axis
=
2
)
np_input_data_fp64
=
self
.
input_data
.
astype
(
'float64'
)
exe
=
paddle
.
static
.
Executor
(
device
)
paddle_res
,
paddle_res_fp64
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"x"
:
np_input_data
,
"x_fp64"
:
np_input_data_fp64
},
fetch_list
=
[
results
,
results_fp64
])
np_res
=
np
.
quantile
(
np_input_data
,
q
=
0.5
,
axis
=
2
)
np_res_fp64
=
np
.
quantile
(
np_input_data_fp64
,
q
=
0.5
,
axis
=
2
)
self
.
assertTrue
(
np
.
allclose
(
paddle_res
,
np_res
)
and
np
.
allclose
(
paddle_res_fp64
,
np_res_fp64
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/stat.py
浏览文件 @
f0f2e2f9
...
...
@@ -387,7 +387,7 @@ def quantile(x, q, axis=None, keepdim=False):
if
not
isinstance
(
x
,
Variable
):
raise
TypeError
(
"input x should be a Tensor."
)
dims
=
len
(
x
.
shape
)
out_shape
=
x
.
shape
out_shape
=
list
(
x
.
shape
)
if
axis
is
None
:
x
=
paddle
.
flatten
(
x
)
axis
=
0
...
...
@@ -433,16 +433,15 @@ def quantile(x, q, axis=None, keepdim=False):
indices
.
append
(
q_num
*
(
x
.
shape
[
axis
]
-
1
))
else
:
raise
TypeError
(
"Type of q should be int, float, list or tuple."
)
indices
=
paddle
.
to_tensor
(
indices
).
astype
(
paddle
.
float32
)
sorted_tensor
=
paddle
.
sort
(
x
,
axis
)
indices_below
=
paddle
.
floor
(
indices
).
astype
(
paddle
.
int32
)
indices_upper
=
paddle
.
ceil
(
indices
).
astype
(
paddle
.
int32
)
indices_tensor
=
paddle
.
assign
(
indices
).
astype
(
paddle
.
float32
)
indices_below
=
paddle
.
floor
(
indices_tensor
).
astype
(
paddle
.
int32
)
indices_upper
=
paddle
.
ceil
(
indices_tensor
).
astype
(
paddle
.
int32
)
outputs
=
[]
def
expand_dim
(
indices
,
sorted_tensor_shape
,
axis
):
assert
axis
<
len
(
list
(
sorted_tensor_shape
))
expanded_shape
=
[
1
]
*
len
(
list
(
sorted_tensor_shape
))
expanded_shape
[
axis
]
=
len
(
indices
)
expanded_shape
=
tuple
(
expanded_shape
)
indices
=
indices
.
reshape
(
expanded_shape
)
return
indices
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录