Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f0716491
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f0716491
编写于
1月 03, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix backward
上级
1399e5a3
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
37 addition
and
51 deletion
+37
-51
paddle/operators/hierarchical_sigmoid_op.cc
paddle/operators/hierarchical_sigmoid_op.cc
+14
-14
paddle/operators/hierarchical_sigmoid_op.h
paddle/operators/hierarchical_sigmoid_op.h
+19
-19
paddle/operators/math/matrix_bit_code.cc
paddle/operators/math/matrix_bit_code.cc
+0
-1
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+0
-2
python/paddle/v2/fluid/executor.py
python/paddle/v2/fluid/executor.py
+0
-1
python/paddle/v2/fluid/tests/op_test.py
python/paddle/v2/fluid/tests/op_test.py
+0
-2
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
+4
-12
未找到文件。
paddle/operators/hierarchical_sigmoid_op.cc
浏览文件 @
f0716491
...
@@ -61,10 +61,8 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
...
@@ -61,10 +61,8 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ids"
),
"Input(Ids) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Parameters"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) should not be null."
);
"Input(Parameters)"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
...
@@ -84,15 +82,17 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
...
@@ -84,15 +82,17 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Parameters"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) should not be null."
);
"Input(Parameters)"
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ids"
),
"Input(Ids) should not be null."
);
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"W"
)),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(W@Grad should not be null.)"
);
"Input(Label)"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Parameters"
)),
"Input(Parameters@Grad should not be null.)"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
}
protected:
protected:
...
@@ -112,11 +112,11 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -112,11 +112,11 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor, required) The input Tensor, which the shape is"
"(Tensor, required) The input Tensor, which the shape is"
"[N * D], which N is the size of mini-batch,"
"[N * D], which N is the size of mini-batch,"
"D is the embded size"
);
"D is the embded size"
);
AddInput
(
"
Parameters
"
,
AddInput
(
"
W
"
,
"(Tensor, required), The parameters of hierarchical "
"(Tensor, required), The parameters of hierarchical "
"sigmoid operator, each of them is s a 3-D tensor, the shape is"
"sigmoid operator, each of them is s a 3-D tensor, the shape is"
"[N, num_classes - 1, D]"
);
"[N, num_classes - 1, D]"
);
AddInput
(
"
Label
"
,
AddInput
(
"
Ids
"
,
"(Tensor, required), The labels of training data. It's a"
"(Tensor, required), The labels of training data. It's a"
"1-D tensor, which the shape is [1, N]"
);
"1-D tensor, which the shape is [1, N]"
);
AddInput
(
"Bias"
,
AddInput
(
"Bias"
,
...
...
paddle/operators/hierarchical_sigmoid_op.h
浏览文件 @
f0716491
...
@@ -32,15 +32,14 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
...
@@ -32,15 +32,14 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
params
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Parameters
"
);
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W
"
);
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label
"
);
auto
*
ids
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Ids
"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
batch_size
=
in
->
dims
()[
0
];
int64_t
batch_size
=
in
->
dims
()[
0
];
auto
*
ids
=
label
->
data
<
int64_t
>
();
framework
::
Tensor
pre_out
;
framework
::
Tensor
pre_out
;
framework
::
Tensor
sum
;
framework
::
Tensor
sum
;
auto
pre_out_data
=
pre_out
.
mutable_data
<
T
>
(
auto
pre_out_data
=
pre_out
.
mutable_data
<
T
>
(
...
@@ -59,18 +58,19 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
...
@@ -59,18 +58,19 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
if
(
bias
)
{
if
(
bias
)
{
bit_code
.
Add
(
num_classes
,
ids
,
pre_out
,
*
bias
);
bit_code
.
Add
(
num_classes
,
ids
->
data
<
int64_t
>
()
,
pre_out
,
*
bias
);
}
}
for
(
int
i
=
0
;
i
<
in
->
dims
()[
0
];
++
i
)
{
for
(
int
i
=
0
;
i
<
in
->
dims
()[
0
];
++
i
)
{
bit_code
.
Mul
(
num_classes
,
ids
,
pre_out
,
params
->
Slice
(
i
,
i
+
1
)
,
bit_code
.
Mul
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
in
->
Slice
(
i
,
i
+
1
));
w
->
Slice
(
i
,
i
+
1
),
in
->
Slice
(
i
,
i
+
1
));
}
}
// clip the matrix with (-40, 40)
// clip the matrix with (-40, 40)
Transform
<
DeviceContext
>
trans
;
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
.
numel
(),
pre_out_data
,
pre_out_data
+
pre_out
.
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
bit_code
.
Sum
(
num_classes
,
ids
,
pre_out
,
*
out
,
static_cast
<
T
>
(
-
1
));
bit_code
.
Sum
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
*
out
,
static_cast
<
T
>
(
-
1
));
// softrelu with threshold is 40.0
// softrelu with threshold is 40.0
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
.
numel
(),
pre_out_data
,
pre_out_data
+
pre_out
.
numel
(),
pre_out_data
,
...
@@ -88,10 +88,9 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -88,10 +88,9 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
in_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
params
=
auto
*
w
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"W"
));
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Parameters"
));
auto
*
bias
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
bias
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label
"
);
auto
*
ids
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Ids
"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
batch_size
=
in
->
dims
()[
0
];
int64_t
batch_size
=
in
->
dims
()[
0
];
...
@@ -102,8 +101,6 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -102,8 +101,6 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
device_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
device_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
pre_out
);
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
pre_out
);
auto
*
ids
=
label
->
data
<
int64_t
>
();
// init pre_out matrix with {1.0}
// init pre_out matrix with {1.0}
math
::
SetConstant
<
DeviceContext
,
T
>
one
;
math
::
SetConstant
<
DeviceContext
,
T
>
one
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
;
...
@@ -112,19 +109,22 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -112,19 +109,22 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
pre_out_mat
.
device
(
place
)
=
pre_out_mat
.
device
(
place
)
=
pre_out_mat
*
(
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
);
pre_out_mat
*
(
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
);
bit_code
.
Sub
(
num_classes
,
ids
,
pre_out
);
bit_code
.
Sub
(
num_classes
,
ids
->
data
<
int64_t
>
()
,
pre_out
);
if
(
bias
)
{
if
(
bias
)
{
bit_code
.
AddGrad
(
num_classes
,
ids
,
pre_out
,
*
bias
);
bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bit_code
.
AddGrad
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
*
bias
);
}
}
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
w
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
int
i
=
0
;
i
<
in_grad
->
dims
()[
0
];
++
i
)
{
for
(
int
i
=
0
;
i
<
in_grad
->
dims
()[
0
];
++
i
)
{
auto
p_sliced
=
params
->
Slice
(
i
,
i
+
1
);
auto
p_sliced
=
w
->
Slice
(
i
,
i
+
1
);
auto
in_sliced
=
in
->
Slice
(
i
,
i
+
1
);
auto
in_sliced
=
in
->
Slice
(
i
,
i
+
1
);
auto
in_grad_sliced
=
in_grad
->
Slice
(
i
,
i
+
1
);
auto
in_grad_sliced
=
in_grad
->
Slice
(
i
,
i
+
1
);
bit_code
.
MulGradWeight
(
num_classes
,
ids
,
pre_out
,
p_sliced
,
in_sliced
);
bit_code
.
MulGradWeight
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
bit_code
.
MulGradError
(
num_classes
,
ids
,
pre_out
,
p_sliced
,
p_sliced
,
in_sliced
);
in_grad_sliced
);
bit_code
.
MulGradError
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
p_sliced
,
in_grad_sliced
);
}
}
}
}
};
};
...
...
paddle/operators/math/matrix_bit_code.cc
浏览文件 @
f0716491
...
@@ -56,7 +56,6 @@ static void AddByBitCodeT(Op op, CodeTable code_table, const int64_t* codes,
...
@@ -56,7 +56,6 @@ static void AddByBitCodeT(Op op, CodeTable code_table, const int64_t* codes,
const
framework
::
Tensor
&
vec
)
{
const
framework
::
Tensor
&
vec
)
{
size_t
num_sample
=
tmat
.
dims
()[
0
];
size_t
num_sample
=
tmat
.
dims
()[
0
];
size_t
width
=
vec
.
dims
()[
1
];
size_t
width
=
vec
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_sample
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
num_sample
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
int
code_length
=
code
.
get_length
();
int
code_length
=
code
.
get_length
();
...
...
paddle/pybind/pybind.cc
浏览文件 @
f0716491
...
@@ -109,8 +109,6 @@ PYBIND11_PLUGIN(core) {
...
@@ -109,8 +109,6 @@ PYBIND11_PLUGIN(core) {
.
def
(
"shape"
,
[](
Tensor
&
self
)
{
return
vectorize
(
self
.
dims
());
})
.
def
(
"shape"
,
[](
Tensor
&
self
)
{
return
vectorize
(
self
.
dims
());
})
.
def
(
"set_float_element"
,
TensorSetElement
<
float
>
)
.
def
(
"set_float_element"
,
TensorSetElement
<
float
>
)
.
def
(
"get_float_element"
,
TensorGetElement
<
float
>
)
.
def
(
"get_float_element"
,
TensorGetElement
<
float
>
)
.
def
(
"set_int64_element"
,
TensorSetElement
<
int64_t
>
)
.
def
(
"get_int64_element"
,
TensorGetElement
<
int64_t
>
)
.
def
(
"set_double_element"
,
TensorSetElement
<
double
>
)
.
def
(
"set_double_element"
,
TensorSetElement
<
double
>
)
.
def
(
"get_double_element"
,
TensorGetElement
<
double
>
)
.
def
(
"get_double_element"
,
TensorGetElement
<
double
>
)
.
def
(
"dtype"
,
[](
Tensor
&
self
)
{
return
ToDataType
(
self
.
type
());
});
.
def
(
"dtype"
,
[](
Tensor
&
self
)
{
return
ToDataType
(
self
.
type
());
});
...
...
python/paddle/v2/fluid/executor.py
浏览文件 @
f0716491
...
@@ -148,7 +148,6 @@ class Executor(object):
...
@@ -148,7 +148,6 @@ class Executor(object):
inputs
=
{
'X'
:
[
var
]},
inputs
=
{
'X'
:
[
var
]},
outputs
=
{
'Out'
:
[
fetch_var
]},
outputs
=
{
'Out'
:
[
fetch_var
]},
attrs
=
{
'col'
:
i
})
attrs
=
{
'col'
:
i
})
self
.
executor
.
run
(
program
.
desc
,
scope
,
0
,
True
,
True
)
self
.
executor
.
run
(
program
.
desc
,
scope
,
0
,
True
,
True
)
outs
=
[
outs
=
[
core
.
get_fetch_variable
(
scope
,
fetch_var_name
,
i
)
core
.
get_fetch_variable
(
scope
,
fetch_var_name
,
i
)
...
...
python/paddle/v2/fluid/tests/op_test.py
浏览文件 @
f0716491
...
@@ -123,8 +123,6 @@ def get_numeric_gradient(scope,
...
@@ -123,8 +123,6 @@ def get_numeric_gradient(scope,
def
__set_elem__
(
tensor
,
i
,
e
):
def
__set_elem__
(
tensor
,
i
,
e
):
if
tensor_to_check_dtype
==
np
.
float32
:
if
tensor_to_check_dtype
==
np
.
float32
:
tensor
.
set_float_element
(
i
,
e
)
tensor
.
set_float_element
(
i
,
e
)
elif
tensor_to_check_dtype
==
np
.
int64
:
tensor
.
set_int64_element
(
i
,
e
)
else
:
else
:
tensor
.
set_double_element
(
i
,
e
)
tensor
.
set_double_element
(
i
,
e
)
...
...
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
浏览文件 @
f0716491
...
@@ -10,16 +10,11 @@ class TestHSigmoidOp(OpTest):
...
@@ -10,16 +10,11 @@ class TestHSigmoidOp(OpTest):
embded_size
=
10
embded_size
=
10
batch_size
=
5
batch_size
=
5
x
=
np
.
random
.
random
((
batch_size
,
embded_size
)).
astype
(
"float32"
)
x
=
np
.
random
.
random
((
batch_size
,
embded_size
)).
astype
(
"float32"
)
parameter
=
np
.
random
.
random
(
w
=
np
.
random
.
random
(
(
batch_size
,
num_classes
-
1
,
embded_size
)).
astype
(
"float32"
)
(
batch_size
,
num_classes
-
1
,
embded_size
)).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
num_classes
,
batch_size
)
ids
=
np
.
random
.
randint
(
0
,
num_classes
,
batch_size
)
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Ids'
:
ids
,
'Bias'
:
bias
}
'X'
:
x
,
'Parameters'
:
parameter
,
'Label'
:
label
,
'Bias'
:
bias
}
self
.
attrs
=
{
'num_classes'
:
num_classes
}
self
.
attrs
=
{
'num_classes'
:
num_classes
}
self
.
outputs
=
{
self
.
outputs
=
{
'Out'
:
np
.
random
.
random
((
batch_size
,
1
)).
astype
(
"float32"
)
'Out'
:
np
.
random
.
random
((
batch_size
,
1
)).
astype
(
"float32"
)
...
@@ -29,10 +24,7 @@ class TestHSigmoidOp(OpTest):
...
@@ -29,10 +24,7 @@ class TestHSigmoidOp(OpTest):
self
.
check_output
()
self
.
check_output
()
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
(
self
.
check_grad
([
'X'
,
'W'
,
'Bias'
],
'Out'
,
no_grad_set
=
set
(
'Ids'
))
[
'X'
,
'Parameters'
,
'Label'
,
'Bias'
],
'Out'
,
no_grad_set
=
set
([
'Label'
]))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录