Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
effdae16
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
effdae16
编写于
10月 08, 2018
作者:
Q
qingqing01
提交者:
GitHub
10月 08, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "Optimization of Kernels that related to DeepLabv3+ (#13534)"
上级
3b7e20b0
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
188 addition
and
817 deletion
+188
-817
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+0
-1
paddle/fluid/operators/conv_op.h
paddle/fluid/operators/conv_op.h
+3
-4
paddle/fluid/operators/conv_transpose_op.h
paddle/fluid/operators/conv_transpose_op.h
+3
-4
paddle/fluid/operators/cub_reduce.h
paddle/fluid/operators/cub_reduce.h
+0
-322
paddle/fluid/operators/math/depthwise_conv.cu
paddle/fluid/operators/math/depthwise_conv.cu
+156
-323
paddle/fluid/operators/math/depthwise_conv.h
paddle/fluid/operators/math/depthwise_conv.h
+1
-4
paddle/fluid/operators/reduce_mean_op.cu
paddle/fluid/operators/reduce_mean_op.cu
+9
-56
paddle/fluid/operators/reduce_sum_op.cu
paddle/fluid/operators/reduce_sum_op.cu
+9
-51
python/paddle/fluid/tests/unittests/test_conv2d_op.py
python/paddle/fluid/tests/unittests/test_conv2d_op.py
+7
-52
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
effdae16
...
...
@@ -301,7 +301,6 @@ op_library(fusion_lstm_op DEPS cpu_lstm_compute)
if
(
WITH_GPU
)
op_library
(
conv_op DEPS vol2col depthwise_conv im2col
)
op_library
(
layer_norm_op DEPS cub
)
op_library
(
reduce_mean_op DEPS cub
)
else
()
op_library
(
conv_op DEPS vol2col im2col
)
endif
()
...
...
paddle/fluid/operators/conv_op.h
浏览文件 @
effdae16
...
...
@@ -380,8 +380,7 @@ class DepthwiseConvKernel : public framework::OpKernel<T> {
math
::
DepthwiseConvFunctor
<
DeviceContext
,
T
>
depthwiseConv
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
depthwiseConv
(
dev_ctx
,
*
input
,
filter
,
strides
,
paddings
,
dilations
,
output
);
depthwiseConv
(
dev_ctx
,
*
input
,
filter
,
strides
,
paddings
,
output
);
}
};
...
...
@@ -416,14 +415,14 @@ class DepthwiseConvGradKernel : public framework::OpKernel<T> {
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
set_zero
(
dev_ctx
,
input_grad
,
static_cast
<
T
>
(
0
));
depthwiseConvInputGrad
(
dev_ctx
,
*
input
,
filter
,
*
output_grad
,
strides
,
paddings
,
dilations
,
input_grad
);
paddings
,
input_grad
);
}
if
(
filter_grad
)
{
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
set_zero
(
dev_ctx
,
filter_grad
,
static_cast
<
T
>
(
0
));
depthwiseConvFilterGrad
(
dev_ctx
,
*
input
,
*
output_grad
,
strides
,
paddings
,
dilations
,
filter_grad
);
filter_grad
);
}
}
};
...
...
paddle/fluid/operators/conv_transpose_op.h
浏览文件 @
effdae16
...
...
@@ -345,7 +345,7 @@ class DepthwiseConvTransposeKernel : public framework::OpKernel<T> {
math
::
DepthwiseConvInputGradFunctor
<
DeviceContext
,
T
>
depthwiseConvInputGrad
;
depthwiseConvInputGrad
(
dev_ctx
,
*
output
,
filter
,
*
input
,
strides
,
paddings
,
dilations
,
output
);
output
);
}
};
...
...
@@ -367,11 +367,10 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
if
(
input_grad
)
{
math
::
DepthwiseConvFunctor
<
DeviceContext
,
T
>
depthwiseConv
;
depthwiseConv
(
dev_ctx
,
*
output_grad
,
filter
,
strides
,
paddings
,
dilations
,
depthwiseConv
(
dev_ctx
,
*
output_grad
,
filter
,
strides
,
paddings
,
input_grad
);
}
...
...
@@ -383,7 +382,7 @@ class DepthwiseConvTransposeGradKernel : public framework::OpKernel<T> {
math
::
DepthwiseConvFilterGradFunctor
<
DeviceContext
,
T
>
depthwiseConvFilterGrad
;
depthwiseConvFilterGrad
(
dev_ctx
,
*
output_grad
,
*
input
,
strides
,
paddings
,
dilations
,
filter_grad
);
filter_grad
);
}
}
};
...
...
paddle/fluid/operators/cub_reduce.h
已删除
100644 → 0
浏览文件 @
3b7e20b0
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>
#include <cub/cub.cuh> // NOLINT
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
operators
{
namespace
detail
{
template
<
typename
T
,
size_t
ElementCount
>
struct
Array
{
public:
HOSTDEVICE
inline
Array
()
{}
HOSTDEVICE
inline
T
&
operator
[](
size_t
index
)
{
return
data_
[
index
];
}
HOSTDEVICE
inline
const
T
&
operator
[](
size_t
index
)
const
{
return
data_
[
index
];
}
HOSTDEVICE
constexpr
inline
size_t
size
()
const
{
return
ElementCount
;
}
template
<
typename
VectorLikeType
>
static
inline
Array
<
T
,
ElementCount
>
From
(
const
VectorLikeType
&
vec
)
{
PADDLE_ENFORCE_EQ
(
vec
.
size
(),
ElementCount
,
"size not match"
);
size_t
n
=
static_cast
<
size_t
>
(
vec
.
size
());
Array
<
T
,
ElementCount
>
ret
;
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
ret
[
i
]
=
vec
[
i
];
return
ret
;
}
private:
T
data_
[
ElementCount
];
};
// reduce the last axis of 2d array
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
BlockDim
>
__global__
void
ReduceKernel2D
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
)
{
__shared__
typename
cub
::
BlockReduce
<
Ty
,
BlockDim
>::
TempStorage
temp_storage
;
int
idx_x
=
blockIdx
.
x
*
reduce_num
;
int
idx_y
=
threadIdx
.
x
;
Ty
reduce_var
=
init
;
for
(
int
idx_y
=
threadIdx
.
x
;
idx_y
<
reduce_num
;
idx_y
+=
BlockDim
)
reduce_var
=
reducer
(
reduce_var
,
transformer
(
x
[
idx_x
+
idx_y
]));
reduce_var
=
cub
::
BlockReduce
<
Ty
,
BlockDim
>
(
temp_storage
).
Reduce
(
reduce_var
,
reducer
);
if
(
threadIdx
.
x
==
0
)
{
y
[
blockIdx
.
x
]
=
reduce_var
;
}
}
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
BlockDim
,
int
Rank
,
int
ReduceRank
>
__global__
void
ReduceKernel
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
Ty
init
,
int
reduce_num
,
Array
<
int
,
Rank
>
x_strides
,
Array
<
int
,
ReduceRank
>
reduce_dim
,
Array
<
int
,
ReduceRank
>
reduce_strides
,
Array
<
int
,
Rank
-
ReduceRank
>
left_dim
,
Array
<
int
,
Rank
-
ReduceRank
>
left_strides
)
{
__shared__
typename
cub
::
BlockReduce
<
Ty
,
BlockDim
>::
TempStorage
temp_storage
;
Array
<
int
,
Rank
>
sub_index
;
int
left_idx
=
blockIdx
.
x
;
for
(
int
i
=
0
;
i
<
Rank
-
ReduceRank
;
++
i
)
{
sub_index
[
left_dim
[
i
]]
=
left_idx
/
left_strides
[
i
];
left_idx
%=
left_strides
[
i
];
}
int
reduce_idx
=
threadIdx
.
x
;
for
(
int
j
=
0
;
j
<
ReduceRank
;
++
j
)
{
sub_index
[
reduce_dim
[
j
]]
=
reduce_idx
/
reduce_strides
[
j
];
reduce_idx
%=
reduce_strides
[
j
];
}
int
idx_x
=
0
;
for
(
int
k
=
0
;
k
<
Rank
;
++
k
)
idx_x
+=
(
sub_index
[
k
]
*
x_strides
[
k
]);
Ty
reduce_var
=
static_cast
<
Ty
>
(
transformer
(
x
[
idx_x
]));
for
(
int
i
=
threadIdx
.
x
+
BlockDim
;
i
<
reduce_num
;
i
+=
BlockDim
)
{
int
reduce_idx
=
i
;
for
(
int
j
=
0
;
j
<
ReduceRank
;
++
j
)
{
sub_index
[
reduce_dim
[
j
]]
=
reduce_idx
/
reduce_strides
[
j
];
reduce_idx
%=
reduce_strides
[
j
];
}
int
idx_x
=
0
;
for
(
int
k
=
0
;
k
<
Rank
;
++
k
)
idx_x
+=
(
sub_index
[
k
]
*
x_strides
[
k
]);
reduce_var
=
static_cast
<
Ty
>
(
reducer
(
reduce_var
,
transformer
(
x
[
idx_x
])));
}
reduce_var
=
cub
::
BlockReduce
<
Ty
,
BlockDim
>
(
temp_storage
).
Reduce
(
reduce_var
,
reducer
);
if
(
threadIdx
.
x
==
0
)
{
y
[
blockIdx
.
x
]
=
reduce_var
;
}
}
static
inline
std
::
vector
<
int
>
GetStrides
(
const
std
::
vector
<
int
>&
dims
)
{
int
n
=
static_cast
<
int
>
(
dims
.
size
());
if
(
n
==
0
)
return
std
::
vector
<
int
>
();
std
::
vector
<
int
>
strides
(
n
);
strides
.
back
()
=
1
;
for
(
int
i
=
n
-
2
;
i
>=
0
;
--
i
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
dims
[
i
+
1
];
}
return
strides
;
}
static
inline
std
::
vector
<
int
>
GetStrides
(
const
std
::
vector
<
int
>&
dims
,
const
std
::
vector
<
int
>&
idx
)
{
int
n
=
static_cast
<
int
>
(
idx
.
size
());
if
(
n
==
0
)
return
std
::
vector
<
int
>
();
std
::
vector
<
int
>
strides
(
n
);
strides
.
back
()
=
1
;
for
(
int
i
=
n
-
2
;
i
>=
0
;
--
i
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
dims
[
idx
[
i
+
1
]];
}
return
strides
;
}
constexpr
int
kMaxBlockDim
=
512
;
static
inline
int
GetDesiredBlockDim
(
int
block_dim
)
{
return
block_dim
>=
kMaxBlockDim
?
kMaxBlockDim
:
(
1
<<
static_cast
<
int
>
(
std
::
log2
(
block_dim
)));
}
template
<
typename
Tx
,
typename
Ty
,
int
BlockDim
,
typename
ReduceOp
,
typename
TransformOp
>
static
void
TensorReduceImpl
(
const
Tx
*
x_data
,
Ty
*
y_data
,
const
platform
::
Place
&
place
,
const
ReduceOp
&
reducer
,
const
TransformOp
&
transformer
,
const
Ty
&
init
,
int
left_num
,
int
reduce_num
,
const
std
::
vector
<
int
>&
x_strides
,
const
std
::
vector
<
int
>&
reduce_dim
,
const
std
::
vector
<
int
>&
reduce_strides
,
const
std
::
vector
<
int
>&
left_dim
,
const
std
::
vector
<
int
>&
left_strides
,
cudaStream_t
stream
)
{
#define CUB_RANK_CASE(i, ...) \
case i: { \
constexpr auto kRank = i; \
switch (reduce_rank) { __VA_ARGS__; } \
} break
#define CUB_REDUCE_RANK_CASE(i, ...) \
case i: { \
constexpr auto kReduceRank = i; \
ReduceKernel<Tx, Ty, ReduceOp, TransformOp, BlockDim, kRank, \
kReduceRank><<<left_num, BlockDim, 0, stream>>>( \
x_data, y_data, reducer, transformer, init, reduce_num, \
Array<int, kRank>::From(x_strides), \
Array<int, kReduceRank>::From(reduce_dim), \
Array<int, kReduceRank>::From(reduce_strides), \
Array<int, kRank - kReduceRank>::From(left_dim), \
Array<int, kRank - kReduceRank>::From(left_strides)); \
} break
int
rank
=
x_strides
.
size
();
int
reduce_rank
=
reduce_strides
.
size
();
if
(
rank
==
reduce_rank
)
{
cub
::
TransformInputIterator
<
Ty
,
TransformOp
,
const
Tx
*>
trans_x
(
x_data
,
transformer
);
size_t
temp_storage_bytes
=
0
;
cub
::
DeviceReduce
::
Reduce
(
nullptr
,
temp_storage_bytes
,
trans_x
,
y_data
,
reduce_num
,
reducer
,
init
,
stream
);
framework
::
Tensor
tmp
;
auto
*
temp_storage
=
tmp
.
mutable_data
<
uint8_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
temp_storage_bytes
)}),
place
);
cub
::
DeviceReduce
::
Reduce
(
temp_storage
,
temp_storage_bytes
,
trans_x
,
y_data
,
reduce_num
,
reducer
,
init
,
stream
);
return
;
}
if
(
rank
==
2
&&
reduce_rank
==
1
&&
reduce_dim
[
0
]
==
1
)
{
ReduceKernel2D
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
,
BlockDim
><<<
left_num
,
BlockDim
,
0
,
stream
>>>
(
x_data
,
y_data
,
reducer
,
transformer
,
init
,
reduce_num
);
return
;
}
/*
if (rank == 3 && reduce_rank == 1 && reduce_dim[0] == 1) {
// TODO(liangdun): we can optimize 3d case which the 2nd axis is reduced.
// Currently, it is handled by code below, but inefficient
return;
}
*/
switch
(
rank
)
{
CUB_RANK_CASE
(
2
,
CUB_REDUCE_RANK_CASE
(
1
););
CUB_RANK_CASE
(
3
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
););
CUB_RANK_CASE
(
4
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
););
CUB_RANK_CASE
(
5
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
););
CUB_RANK_CASE
(
6
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
););
CUB_RANK_CASE
(
7
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
);
CUB_REDUCE_RANK_CASE
(
6
););
CUB_RANK_CASE
(
8
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
);
CUB_REDUCE_RANK_CASE
(
6
););
CUB_RANK_CASE
(
9
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
);
CUB_REDUCE_RANK_CASE
(
6
);
CUB_REDUCE_RANK_CASE
(
7
);
CUB_REDUCE_RANK_CASE
(
8
););
}
#undef CUB_REDUCE_RANK_CASE
#undef CUB_RANK_CASE
}
}
// namespace detail
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
>
void
TensorReduce
(
const
framework
::
Tensor
&
x
,
framework
::
Tensor
*
y
,
std
::
vector
<
int
>
origin_reduce_dims
,
const
Ty
&
init
,
const
ReduceOp
&
reducer
,
const
TransformOp
&
transformer
,
cudaStream_t
stream
)
{
auto
x_dim
=
framework
::
vectorize2int
(
x
.
dims
());
std
::
vector
<
int
>
new_x_dim
,
new_reduce_dims
;
int
is_reduced
=
0
;
for
(
auto
e
:
origin_reduce_dims
)
{
auto
pos
=
e
>=
0
?
e
:
e
+
x_dim
.
size
();
is_reduced
|=
1
<<
e
;
}
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
i
++
)
{
if
((
i
==
0
)
||
(((
is_reduced
>>
i
)
^
(
is_reduced
>>
(
i
-
1
)))
&
1
))
{
new_x_dim
.
push_back
(
x_dim
[
i
]);
if
((
is_reduced
>>
i
)
&
1
)
new_reduce_dims
.
push_back
(
new_x_dim
.
size
()
-
1
);
}
else
{
new_x_dim
[
new_x_dim
.
size
()
-
1
]
*=
x_dim
[
i
];
}
}
x_dim
=
new_x_dim
;
origin_reduce_dims
=
new_reduce_dims
;
int
x_rank
=
static_cast
<
int
>
(
x_dim
.
size
());
std
::
set
<
int
>
left_set
,
reduce_set
;
for
(
int
i
=
0
;
i
<
x_rank
;
++
i
)
left_set
.
insert
(
i
);
for
(
auto
e
:
origin_reduce_dims
)
{
left_set
.
erase
(
e
);
reduce_set
.
insert
(
e
);
}
std
::
vector
<
int
>
reduce_dim
(
reduce_set
.
begin
(),
reduce_set
.
end
());
std
::
vector
<
int
>
left_dim
(
left_set
.
begin
(),
left_set
.
end
());
std
::
vector
<
int
>
x_strides
=
detail
::
GetStrides
(
x_dim
);
std
::
vector
<
int
>
reduce_strides
=
detail
::
GetStrides
(
x_dim
,
reduce_dim
);
std
::
vector
<
int
>
left_strides
=
detail
::
GetStrides
(
x_dim
,
left_dim
);
int
reduce_num
=
reduce_strides
[
0
]
*
x_dim
[
reduce_dim
[
0
]];
int
left_num
=
1
;
if
(
left_dim
.
size
())
left_num
=
left_strides
[
0
]
*
x_dim
[
left_dim
[
0
]];
std
::
vector
<
int
>
y_dim
(
left_dim
.
size
());
for
(
int
i
=
0
;
i
<
left_dim
.
size
();
++
i
)
{
y_dim
[
i
]
=
x_dim
[
left_dim
[
i
]];
}
auto
x_data
=
x
.
data
<
Tx
>
();
auto
y_data
=
y
->
mutable_data
<
Ty
>
(
x
.
place
());
if
(
reduce_num
==
1
)
return
;
#define CUB_BLOCK_DIM_CASE(block_dim) \
case block_dim: { \
constexpr auto kBlockDim = block_dim; \
detail::TensorReduceImpl<Tx, Ty, block_dim, ReduceOp, TransformOp>( \
x_data, y_data, x.place(), reducer, transformer, init, left_num, \
reduce_num, x_strides, reduce_dim, reduce_strides, left_dim, \
left_strides, stream); \
} break
switch
(
detail
::
GetDesiredBlockDim
(
reduce_num
))
{
CUB_BLOCK_DIM_CASE
(
512
);
CUB_BLOCK_DIM_CASE
(
256
);
CUB_BLOCK_DIM_CASE
(
128
);
CUB_BLOCK_DIM_CASE
(
64
);
CUB_BLOCK_DIM_CASE
(
32
);
CUB_BLOCK_DIM_CASE
(
16
);
CUB_BLOCK_DIM_CASE
(
8
);
CUB_BLOCK_DIM_CASE
(
4
);
CUB_BLOCK_DIM_CASE
(
2
);
}
#undef CUB_BLOCK_DIM_CASE
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/depthwise_conv.cu
浏览文件 @
effdae16
此差异已折叠。
点击以展开。
paddle/fluid/operators/math/depthwise_conv.h
浏览文件 @
effdae16
...
...
@@ -32,8 +32,7 @@ class DepthwiseConvFunctor {
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
framework
::
Tensor
*
output
);
const
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
);
};
template
<
typename
DeviceContext
,
typename
T
>
...
...
@@ -44,7 +43,6 @@ class DepthwiseConvInputGradFunctor {
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
framework
::
Tensor
*
input_grad
);
};
...
...
@@ -55,7 +53,6 @@ class DepthwiseConvFilterGradFunctor {
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
framework
::
Tensor
*
filter_grad
);
};
...
...
paddle/fluid/operators/reduce_mean_op.cu
浏览文件 @
effdae16
...
...
@@ -12,64 +12,17 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "paddle/fluid/operators/cub_reduce.h"
#include "paddle/fluid/operators/reduce_mean_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
DivideFunctor
{
HOSTDEVICE
explicit
inline
DivideFunctor
(
int
n
)
:
n_inv
((
T
)(
1.0
/
n
))
{}
HOSTDEVICE
inline
T
operator
()(
const
T
&
x
)
const
{
return
x
*
n_inv
;
}
private:
T
n_inv
;
};
template
<
typename
T
>
class
ReduceMeanKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
bool
keep_dim
=
context
.
Attr
<
bool
>
(
"keep_dim"
);
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
reduce_dims
.
resize
(
input
->
dims
().
size
());
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
reduce_dims
[
i
]
=
i
;
}
else
{
for
(
auto
e
:
dims
)
{
reduce_dims
.
push_back
(
e
>=
0
?
e
:
e
+
input
->
dims
().
size
());
}
}
int
reduce_num
=
1
;
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
{
reduce_num
*=
input
->
dims
()[
reduce_dims
[
i
]];
}
auto
stream
=
context
.
cuda_device_context
().
stream
();
TensorReduce
<
T
,
T
,
cub
::
Sum
,
DivideFunctor
<
T
>>
(
*
input
,
output
,
reduce_dims
,
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
DivideFunctor
<
T
>
(
reduce_num
),
stream
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
reduce_mean
,
ops
::
ReduceMeanKernel
<
float
>
,
ops
::
ReduceMeanKernel
<
double
>
,
ops
::
ReduceMeanKernel
<
int
>
,
ops
::
ReduceMeanKernel
<
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
reduce_mean
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
MeanFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
MeanFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
,
ops
::
MeanFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
,
ops
::
MeanFunctor
>
);
REGISTER_OP_CUDA_KERNEL
(
reduce_mean_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
MeanGradFunctor
>
,
...
...
paddle/fluid/operators/reduce_sum_op.cu
浏览文件 @
effdae16
...
...
@@ -12,59 +12,17 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/cub_reduce.h"
#include "paddle/fluid/operators/reduce_sum_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
IdentityFunctor
{
HOSTDEVICE
explicit
inline
IdentityFunctor
()
{}
HOSTDEVICE
inline
T
operator
()(
const
T
&
x
)
const
{
return
x
;
}
};
template
<
typename
T
>
class
ReduceSumKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
bool
keep_dim
=
context
.
Attr
<
bool
>
(
"keep_dim"
);
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
reduce_dims
.
resize
(
input
->
dims
().
size
());
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
reduce_dims
[
i
]
=
i
;
}
else
{
for
(
auto
e
:
dims
)
{
reduce_dims
.
push_back
(
e
>=
0
?
e
:
e
+
input
->
dims
().
size
());
}
}
int
reduce_num
=
1
;
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
{
reduce_num
*=
input
->
dims
()[
reduce_dims
[
i
]];
}
auto
stream
=
context
.
cuda_device_context
().
stream
();
TensorReduce
<
T
,
T
,
cub
::
Sum
,
IdentityFunctor
<
T
>>
(
*
input
,
output
,
reduce_dims
,
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
IdentityFunctor
<
T
>
(),
stream
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
reduce_sum
,
ops
::
ReduceSumKernel
<
float
>
,
ops
::
ReduceSumKernel
<
double
>
,
ops
::
ReduceSumKernel
<
int
>
,
ops
::
ReduceSumKernel
<
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
reduce_sum
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
SumFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
SumFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
,
ops
::
SumFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
,
ops
::
SumFunctor
>
);
REGISTER_OP_CUDA_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
SumGradFunctor
>
,
...
...
python/paddle/fluid/tests/unittests/test_conv2d_op.py
浏览文件 @
effdae16
...
...
@@ -67,7 +67,6 @@ class TestConv2dOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"conv2d"
self
.
use_cudnn
=
False
self
.
use_cuda
=
False
self
.
use_mkldnn
=
False
self
.
data_format
=
"AnyLayout"
self
.
dtype
=
np
.
float32
...
...
@@ -102,25 +101,24 @@ class TestConv2dOp(OpTest):
}
self
.
outputs
=
{
'Output'
:
output
}
def
testcuda
(
self
):
return
core
.
is_compiled_with_cuda
()
and
(
self
.
use_cudnn
or
self
.
use_cuda
)
def
testcudnn
(
self
):
return
core
.
is_compiled_with_cuda
()
and
self
.
use_cudnn
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
a
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
nn
()
else
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
a
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
nn
()
else
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.02
)
def
test_check_grad_no_filter
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
a
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
nn
()
else
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
...
...
@@ -130,7 +128,7 @@ class TestConv2dOp(OpTest):
def
test_check_grad_no_input
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
a
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcud
nn
()
else
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
...
...
@@ -327,65 +325,22 @@ class TestFP16CUDNNWithInput1x1Filter1x1(TestWithInput1x1Filter1x1):
class
TestDepthwiseConv
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
3
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv2
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
3
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv3
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilation
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilation2
(
TestConv2dOp
):
class
TestDepthwiseConv2
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录