未验证 提交 efea540c 编写于 作者: A AshburnLee 提交者: GitHub

Add tf32 support for A100 tensor core acceleration for cuBLAS (#28732)

上级 7779768b
...@@ -84,8 +84,13 @@ class CublasHandleHolder { ...@@ -84,8 +84,13 @@ class CublasHandleHolder {
if (math_type == CUBLAS_TENSOR_OP_MATH) { if (math_type == CUBLAS_TENSOR_OP_MATH) {
PADDLE_ENFORCE_CUDA_SUCCESS( PADDLE_ENFORCE_CUDA_SUCCESS(
dynload::cublasSetMathMode(handle_, CUBLAS_TENSOR_OP_MATH)); dynload::cublasSetMathMode(handle_, CUBLAS_TENSOR_OP_MATH));
#if CUDA_VERSION >= 11000
} else if (math_type == CUBLAS_TF32_TENSOR_OP_MATH) {
PADDLE_ENFORCE_CUDA_SUCCESS(
dynload::cublasSetMathMode(handle_, CUBLAS_TF32_TENSOR_OP_MATH));
#endif // CUDA_VERSION >= 11000
} }
#endif #endif // CUDA_VERSION >= 9000
} }
~CublasHandleHolder() PADDLE_MAY_THROW { ~CublasHandleHolder() PADDLE_MAY_THROW {
......
...@@ -54,6 +54,12 @@ AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) { ...@@ -54,6 +54,12 @@ AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
namespace paddle { namespace paddle {
namespace platform { namespace platform {
#ifdef PADDLE_WITH_CUDA
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
#endif // PADDLE_WITH_CUDA
DeviceContextPool* DeviceContextPool::pool = nullptr; DeviceContextPool* DeviceContextPool::pool = nullptr;
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) { platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
......
...@@ -57,6 +57,13 @@ struct GpuDevice; ...@@ -57,6 +57,13 @@ struct GpuDevice;
namespace paddle { namespace paddle {
namespace platform { namespace platform {
#ifdef PADDLE_WITH_CUDA
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
#endif // PADDLE_WITH_CUDA
class DeviceContext { class DeviceContext {
public: public:
virtual ~DeviceContext() PADDLE_MAY_THROW {} virtual ~DeviceContext() PADDLE_MAY_THROW {}
...@@ -161,7 +168,11 @@ class CUDAContext { ...@@ -161,7 +168,11 @@ class CUDAContext {
/*! \brief Call cublas function safely. */ /*! \brief Call cublas function safely. */
template <typename Callback> template <typename Callback>
inline void CublasCall(Callback&& callback) const { inline void CublasCall(Callback&& callback) const {
cublas_handle_->Call(std::forward<Callback>(callback)); if (cublas_tf32_tensor_core_handle_) {
cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
} else {
cublas_handle_->Call(std::forward<Callback>(callback));
}
} }
/*! \brief Check whether tensor core is supported */ /*! \brief Check whether tensor core is supported */
...@@ -188,7 +199,11 @@ class CUDAContext { ...@@ -188,7 +199,11 @@ class CUDAContext {
#if CUDA_VERSION >= 9000 #if CUDA_VERSION >= 9000
cublas_tensor_core_handle_.reset( cublas_tensor_core_handle_.reset(
new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH)); new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
#endif #if CUDA_VERSION >= 11000
cublas_tf32_tensor_core_handle_.reset(
new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif // CUDA_VERSION >= 11000
#endif // CUDA_VERSION >= 9000
} }
} }
...@@ -231,6 +246,7 @@ class CUDAContext { ...@@ -231,6 +246,7 @@ class CUDAContext {
void DestoryCuBlasContext() { void DestoryCuBlasContext() {
cublas_handle_.reset(); cublas_handle_.reset();
cublas_tensor_core_handle_.reset(); cublas_tensor_core_handle_.reset();
cublas_tf32_tensor_core_handle_.reset();
} }
void DestoryCuSolverContext() { void DestoryCuSolverContext() {
...@@ -247,6 +263,7 @@ class CUDAContext { ...@@ -247,6 +263,7 @@ class CUDAContext {
cudnnHandle_t cudnn_handle_; cudnnHandle_t cudnn_handle_;
std::unique_ptr<CublasHandleHolder> cublas_handle_; std::unique_ptr<CublasHandleHolder> cublas_handle_;
std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_; std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
cusolverDnHandle_t cusolver_dn_handle_; cusolverDnHandle_t cusolver_dn_handle_;
DISABLE_COPY_AND_ASSIGN(CUDAContext); DISABLE_COPY_AND_ASSIGN(CUDAContext);
}; };
......
...@@ -58,6 +58,7 @@ limitations under the License. */ ...@@ -58,6 +58,7 @@ limitations under the License. */
#include "paddle/fluid/operators/py_func_op.h" #include "paddle/fluid/operators/py_func_op.h"
#include "paddle/fluid/platform/cpu_helper.h" #include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/cpu_info.h" #include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h" #include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/init.h" #include "paddle/fluid/platform/init.h"
...@@ -1980,6 +1981,11 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -1980,6 +1981,11 @@ All parameter, weight, gradient are variables in Paddle.
m.def("size_of_dtype", framework::SizeOfType); m.def("size_of_dtype", framework::SizeOfType);
#ifdef PADDLE_WITH_CUDA
m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
m.def("get_cublas_switch", platform::AllowTF32Cublas);
#endif // PADDLE_WITH_CUDA
using VarQuantScale = using VarQuantScale =
std::unordered_map<std::string, std::pair<bool, LoDTensor>>; std::unordered_map<std::string, std::pair<bool, LoDTensor>>;
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import six
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
class TestTF32Switch(unittest.TestCase):
def test_on_off(self):
if core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self.assertTrue(core.get_cublas_switch()) # default
core.set_cublas_switch(False)
self.assertFalse(core.get_cublas_switch()) # turn off
core.set_cublas_switch(True)
self.assertTrue(core.get_cublas_switch()) # turn on
core.set_cublas_switch(True) # restore the switch
else:
pass
class TestTF32OnMatmul(unittest.TestCase):
def test_dygraph_without_out(self):
if core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
core.set_cublas_switch(False) # turn off
with fluid.dygraph.guard(place):
input_array1 = np.random.rand(4, 12, 64, 88).astype("float32")
input_array2 = np.random.rand(4, 12, 88, 512).astype("float32")
data1 = paddle.to_tensor(input_array1)
data2 = paddle.to_tensor(input_array2)
out = paddle.matmul(data1, data2)
expected_result = np.matmul(input_array1, input_array2)
self.assertTrue(np.allclose(expected_result, out.numpy(), 1e-03))
core.set_cublas_switch(True) # restore the switch
else:
pass
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册