未验证 提交 ef2b12f1 编写于 作者: Y Yiqun Liu 提交者: GitHub

Reimplement paddle.utils.install_check. (#27771) (#27963)

上级 b7fd4f92
......@@ -49,7 +49,7 @@ def run_check():
This func should not be called only if you need to verify installation
Examples:
.. code-block: python
.. code-block:: python
import paddle.fluid as fluid
fluid.install_check.run_check()
......
......@@ -14,13 +14,17 @@
from __future__ import print_function
import unittest
import paddle
import paddle.fluid as fluid
class TestInstallCheck(unittest.TestCase):
def test_install_check(self):
def test_paddle_fluid(self):
fluid.install_check.run_check()
def test_paddle_utils(self):
paddle.utils.run_check()
if __name__ == '__main__':
unittest.main()
......@@ -17,13 +17,14 @@ from .profiler import Profiler
from .profiler import get_profiler
from .deprecated import deprecated
from .lazy_import import try_import
from .install_check import run_check
from ..fluid.framework import unique_name
from ..fluid.framework import load_op_library
from ..fluid.framework import require_version
from . import download
__all__ = ['dump_config', 'deprecated', 'download']
__all__ = ['dump_config', 'deprecated', 'download', 'run_check']
#TODO: define new api under this directory
__all__ += ['unique_name', 'load_op_library', 'require_version']
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import os
import logging
import numpy as np
import paddle
__all__ = ['run_check']
def _simple_network():
"""
Define a simple network composed by a single linear layer.
"""
input = paddle.static.data(
name="input", shape=[None, 2, 2], dtype="float32")
weight = paddle.create_parameter(
shape=[2, 3],
dtype="float32",
attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.1)))
bias = paddle.create_parameter(shape=[3], dtype="float32")
linear_out = paddle.nn.functional.linear(x=input, weight=weight, bias=bias)
out = paddle.tensor.sum(linear_out)
return input, out, weight
def _prepare_data(device_count):
"""
Prepare feeding data for simple network. The shape is [device_count, 2, 2].
Args:
device_count (int): The number of devices.
"""
# Prepare the feeding data.
np_input_single = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
if device_count == 1:
return np_input_single.reshape(device_count, 2, 2)
else:
input_list = []
for i in range(device_count):
input_list.append(np_input_single)
np_input_muti = np.array(input_list)
np_input_muti = np_input_muti.reshape(device_count, 2, 2)
return np_input_muti
def _is_cuda_available():
"""
Check whether CUDA is avaiable.
"""
try:
assert len(paddle.static.cuda_places()) > 0
return True
except Exception as e:
logging.warning(
"You are using GPU version PaddlePaddle, but there is no GPU "
"detected on your machine. Maybe CUDA devices is not set properly."
"\n Original Error is {}".format(e))
return False
def _run_static_single(use_cuda):
"""
Testing the simple network with executor running directly, using one CPU/GPU.
Args:
use_cuda (bool): Whether running with CUDA.
"""
paddle.enable_static()
with paddle.static.scope_guard(paddle.static.Scope()):
train_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
startup_prog.random_seed = 1
with paddle.static.program_guard(train_prog, startup_prog):
input, out, weight = _simple_network()
param_grads = paddle.static.append_backward(
out, parameter_list=[weight.name])[0]
exe = paddle.static.Executor(
paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace())
exe.run(startup_prog)
exe.run(train_prog,
feed={input.name: _prepare_data(1)},
fetch_list=[out.name, param_grads[1].name])
paddle.disable_static()
def _run_static_parallel(use_cuda, device_list):
"""
Testing the simple network in data parallel mode, using multiple CPU/GPU.
Args:
use_cuda (bool): Whether running with CUDA.
device_list (int): The specified devices.
"""
paddle.enable_static()
with paddle.static.scope_guard(paddle.static.Scope()):
train_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
with paddle.static.program_guard(train_prog, startup_prog):
input, out, _ = _simple_network()
loss = paddle.tensor.mean(out)
loss.persistable = True
paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
compiled_prog = paddle.static.CompiledProgram(
train_prog).with_data_parallel(
loss_name=loss.name, places=device_list)
exe = paddle.static.Executor(
paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace())
exe.run(startup_prog)
exe.run(compiled_prog,
feed={input.name: _prepare_data(len(device_list))},
fetch_list=[loss.name])
paddle.disable_static()
def run_check():
"""
Check whether PaddlePaddle is installed correctly and running successfully
on your system.
Examples:
.. code-block:: python
import paddle
paddle.utils.run_check()
# Running verify PaddlePaddle program ...
# W1010 07:21:14.972093 8321 device_context.cc:338] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 11.0, Runtime API Version: 10.1
# W1010 07:21:14.979770 8321 device_context.cc:346] device: 0, cuDNN Version: 7.6.
# PaddlePaddle works well on 1 GPU.
# PaddlePaddle works well on 8 GPUs.
# PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
"""
print("Running verify PaddlePaddle program ... ")
use_cuda = _is_cuda_available()
if use_cuda:
device_str = "GPU"
device_list = paddle.static.cuda_places()
else:
device_str = "CPU"
device_list = paddle.static.cpu_places(device_count=2)
device_count = len(device_list)
_run_static_single(use_cuda)
print("PaddlePaddle works well on 1 {}.".format(device_str))
try:
_run_static_parallel(use_cuda, device_list)
print("PaddlePaddle works well on {} {}s.".format(device_count,
device_str))
print(
"PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now."
)
except Exception as e:
logging.warning(
"PaddlePaddle meets some problem with {} {}s. This may be caused by:"
"\n 1. There is not enough GPUs visible on your system"
"\n 2. Some GPUs are occupied by other process now"
"\n 3. NVIDIA-NCCL2 is not installed correctly on your system. Please follow instruction on https://github.com/NVIDIA/nccl-tests "
"\n to test your NCCL, or reinstall it following https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html".
format(device_count, device_str))
logging.warning("\n Original Error is: {}".format(e))
print("PaddlePaddle is installed successfully ONLY for single {}! "
"Let's start deep learning with PaddlePaddle now.".format(
device_str))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册