Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
eef0a943
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eef0a943
编写于
9月 28, 2021
作者:
W
WangXi
提交者:
GitHub
9月 28, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid] optimizer sharding support optimize cast (#35878)
上级
d5268a6e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
440 addition
and
54 deletion
+440
-54
python/paddle/distributed/fleet/meta_optimizers/sharding/offload_helper.py
...tributed/fleet/meta_optimizers/sharding/offload_helper.py
+205
-8
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
...addle/distributed/fleet/meta_optimizers/sharding/utils.py
+67
-1
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+69
-18
python/paddle/fluid/tests/unittests/test_fleet_hybrid_meta_optimizer.py
...fluid/tests/unittests/test_fleet_hybrid_meta_optimizer.py
+76
-0
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
...uid/tests/unittests/test_fleet_sharding_meta_optimizer.py
+23
-27
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/sharding/offload_helper.py
浏览文件 @
eef0a943
...
...
@@ -12,8 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
from
..common
import
is_optimizer_op
,
OP_ROLE_KEY
,
OpRole
,
is_update_op
from
paddle.fluid
import
core
,
unique_name
from
.shard
import
Shard
__all__
=
[]
...
...
@@ -23,11 +25,8 @@ class OffloadHelper(object):
cuda_place_type
=
1
cuda_pinned_place_type
=
2
def
__init__
(
self
):
pass
"0: dst is on CPUPlace. "
"1: dst is on CUDAPlace. "
"2: dst is on CUDAPinnedPlace. "
def
__init__
(
self
,
ring_id
=
None
):
self
.
ring_id
=
ring_id
def
_insert_cast_op
(
self
,
block
,
idx
,
src_name
,
dst_name
):
src_var
=
block
.
var
(
src_name
)
...
...
@@ -50,6 +49,21 @@ class OffloadHelper(object):
OP_ROLE_KEY
:
OpRole
.
Optimize
})
def
_insert_broadcast_op
(
self
,
block
,
idx
,
param
):
if
self
.
ring_id
is
None
:
return
block
.
_insert_op_without_sync
(
idx
,
type
=
"c_broadcast"
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
self
.
ring_id
,
'root'
:
0
,
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
OpRole
.
Forward
,
})
def
_insert_memcpy_op
(
self
,
block
,
idx
,
src_name
,
dst_name
,
dst_place_type
):
src_var
=
block
.
var
(
src_name
)
dst_var
=
block
.
var
(
dst_name
)
...
...
@@ -206,6 +220,8 @@ class OffloadHelper(object):
# step5: startup_block add offload
visited_vars
=
set
()
# FIXME(wangxi): should insert in idx, need move comm init to the head.
insert_idx
=
len
(
startup_block
.
ops
)
for
idx
,
op
in
reversed
(
list
(
enumerate
(
startup_block
.
ops
))):
for
out_name
in
op
.
output_arg_names
:
if
out_name
in
visited_vars
:
...
...
@@ -213,13 +229,16 @@ class OffloadHelper(object):
if
out_name
in
param_name_to_offload_name
:
var_name
=
out_name
# FIXME(wangxi): offload should insert after broadcast param
if
offload
:
offload_var_name
=
param_name_to_offload_name
[
var_name
]
self
.
_insert_offload_op
(
startup_block
,
i
dx
+
1
,
self
.
_insert_offload_op
(
startup_block
,
i
nsert_idx
,
var_name
,
offload_var_name
)
self
.
_insert_cast_op
(
startup_block
,
i
dx
+
1
,
var_name
,
self
.
_insert_cast_op
(
startup_block
,
i
nsert_idx
,
var_name
,
param_to_fp16
[
var_name
])
# NOTE(wangxi): cast and offload should insert after broadcast param.
# the insert op order is: broadcast, cast, offload
self
.
_insert_broadcast_op
(
startup_block
,
insert_idx
,
var_name
)
visited_vars
.
add
(
out_name
)
...
...
@@ -303,3 +322,181 @@ class OffloadHelper(object):
block
.
_sync_with_cpp
()
startup_block
.
_sync_with_cpp
()
def
opt_sharding_cast_fp32param
(
self
,
block
,
startup_block
,
params
,
offload
=
False
):
"""
(p_fp16) = cast(p)
(p_fp16_recompute) = cast(p)
(pout,) = adam(p)
===========================>
rename(p_fp16_recompute, p_fp16)
(pout,) = adam(p)
(p_fp16) = cast(p)
broadcast(p_fp16)
"""
global_params
=
set
()
local_params
=
set
()
param_to_fp16
=
dict
()
# recompute_var which need rename to fp16_param
fp16_param_to_recompute
=
dict
()
recompute_to_fp16
=
dict
()
def
remove_param
(
input_name
):
global_params
.
remove
(
input_name
)
if
input_name
in
local_params
:
local_params
.
remove
(
input_name
)
if
input_name
in
param_to_fp16
:
fp16_param
=
param_to_fp16
.
pop
(
input_name
)
if
fp16_param
in
fp16_param_to_recompute
:
recompute
=
fp16_param_to_recompute
.
pop
(
fp16_param
)
recompute_to_fp16
.
pop
(
recompute
)
# step1: record param
global_params
=
set
(
params
)
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_update_op
(
op
):
param
=
op
.
desc
.
input
(
"Param"
)[
0
]
local_params
.
add
(
param
)
# step2: remove param which can't offload and
# record param->fp16param, fp16param->recompute_var
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
break
# TODO (Yuang Liu): tmp solution for fuse_grad_merge + optimize_cast
if
op
.
type
==
'coalesce_tensor'
:
continue
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
not
in
global_params
:
continue
# param which will be used by fp32 op
if
op
.
type
!=
'cast'
:
remove_param
(
input_name
)
continue
# param is only used by cast op,
# which to cast fp32_param to fp16_param
output_name
=
op
.
output_arg_names
[
0
]
if
'cast_fp16'
not
in
output_name
:
remove_param
(
input_name
)
continue
if
'subprog'
not
in
output_name
:
assert
output_name
==
input_name
+
'.cast_fp16'
assert
input_name
not
in
param_to_fp16
,
\
"There must be only one cast op from fp32 param to fp16 param."
param_to_fp16
[
input_name
]
=
output_name
else
:
# fp16-->recompute_var
assert
input_name
in
param_to_fp16
,
\
"param must first be cast to fp16"
fp16_param
=
param_to_fp16
[
input_name
]
fp16_param_to_recompute
[
fp16_param
]
=
output_name
recompute_to_fp16
[
output_name
]
=
fp16_param
param_name_to_offload_name
=
dict
()
# step3: main_block add offload, cast op
# change recompute to fp16, remove cast(param) to fp16
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_update_op
(
op
):
param
=
op
.
desc
.
input
(
"Param"
)[
0
]
if
param
not
in
global_params
:
continue
# step3.1: create offload_var
offload_var_name
=
self
.
_get_offload_var_name
(
param
)
param_name_to_offload_name
[
param
]
=
offload_var_name
if
offload
:
self
.
_create_offload_var
(
param
,
offload_var_name
,
[
block
,
startup_block
])
# step3.2: insert cast op and offload op
self
.
_insert_offload_op
(
block
,
idx
+
1
,
param
,
offload_var_name
)
assert
param
in
param_to_fp16
fp16_param_name
=
param_to_fp16
[
param
]
fp16_param_var
=
block
.
var
(
fp16_param_name
)
fp16_param_var
.
persistable
=
True
self
.
_insert_cast_op
(
block
,
idx
+
1
,
param
,
param_to_fp16
[
param
])
if
offload
:
# step3.3: insert fetch op
self
.
_insert_fetch_op
(
block
,
idx
,
offload_var_name
,
param
)
continue
# step3.4: remove cast op
if
op
.
type
==
'cast'
:
input_name
=
op
.
desc
.
input_arg_names
()[
0
]
if
input_name
in
global_params
:
block
.
_remove_op
(
idx
,
sync
=
False
)
continue
# step3.5: change recompute_param to fp16_param
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
in
recompute_to_fp16
:
op
.
_rename_input
(
input_name
,
recompute_to_fp16
[
input_name
])
for
output_name
in
op
.
desc
.
output_arg_names
():
if
output_name
in
recompute_to_fp16
:
op
.
_rename_output
(
output_name
,
recompute_to_fp16
[
output_name
])
# step4: remove recompute_param
for
name
in
recompute_to_fp16
.
keys
():
block
.
_remove_var
(
name
,
sync
=
False
)
# step5: remove fp32 param which not need
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
op
.
type
not
in
[
'coalesce_tensor'
,
'c_broadcast'
]:
continue
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
in
param_to_fp16
:
op
.
_rename_input
(
input_name
,
param_to_fp16
[
input_name
])
for
output_name
in
op
.
desc
.
output_arg_names
():
if
output_name
in
param_to_fp16
:
op
.
_rename_output
(
output_name
,
param_to_fp16
[
output_name
])
for
param
in
global_params
:
assert
param
in
param_to_fp16
fp16_param_name
=
param_to_fp16
[
param
]
fp16_param_var
=
block
.
var
(
fp16_param_name
)
fp16_param_var
.
persistable
=
True
if
param
not
in
local_params
:
block
.
_remove_var
(
param
,
sync
=
False
)
# step6: startup_block add offload
visited_vars
=
set
()
insert_idx
=
len
(
startup_block
.
ops
)
for
idx
,
op
in
reversed
(
list
(
enumerate
(
startup_block
.
ops
))):
for
out_name
in
op
.
output_arg_names
:
if
out_name
in
visited_vars
:
continue
if
out_name
in
param_to_fp16
:
var_name
=
out_name
if
offload
:
self
.
_insert_offload_op
(
startup_block
,
idx
+
1
,
var_name
,
param_name_to_offload_name
[
var_name
])
self
.
_insert_cast_op
(
startup_block
,
insert_idx
,
var_name
,
param_to_fp16
[
var_name
])
self
.
_insert_broadcast_op
(
startup_block
,
insert_idx
,
var_name
)
if
var_name
not
in
local_params
:
param
=
startup_block
.
var
(
out_name
)
param
.
persistable
=
False
visited_vars
.
add
(
out_name
)
block
.
_sync_with_cpp
()
startup_block
.
_sync_with_cpp
()
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
浏览文件 @
eef0a943
...
...
@@ -14,7 +14,7 @@
import
paddle
from
paddle.fluid
import
core
,
unique_name
from
functools
import
reduce
from
paddle.distributed.fleet.meta_optimizers.common
import
is_loss_grad_op
,
is_backward_op
from
paddle.distributed.fleet.meta_optimizers.common
import
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
import
re
...
...
@@ -366,6 +366,24 @@ def insert_allreduce_ops(block,
class
FuseHelper
(
object
):
@
staticmethod
def
sort_vars_by_dtype
(
block
,
vars_name
):
fp32_vars
=
[]
fp16_vars
=
[]
other_vars
=
[]
for
var
in
vars_name
:
dtype
=
block
.
var
(
var
).
dtype
if
dtype
==
paddle
.
float32
:
fp32_vars
.
append
(
var
)
elif
dtype
==
paddle
.
float16
:
fp16_vars
.
append
(
var
)
else
:
other_vars
.
append
(
var
)
assert
len
(
other_vars
)
==
0
,
"only support fp32/fp16 vars for fuse"
fp32_vars
.
extend
(
fp16_vars
)
return
fp32_vars
@
staticmethod
def
get_fused_groups
(
block
,
vars_name
,
fuse_size
=
32.
):
""" coalesce tensor, get fused group """
...
...
@@ -639,6 +657,54 @@ def insert_broadcast_param_ops(block,
return
param_in_this_device
def
fuse_opt_broadcast_param_ops
(
block
,
ring_id
,
shard
,
op_role
=
OpRole
.
Optimize
,
strategy
=
None
):
"""
fuse optimizer sharding broadcast param ops
"""
if
strategy
is
None
or
not
strategy
.
fuse_all_reduce_ops
:
return
fuse_size
=
strategy
.
fuse_grad_size_in_MB
nranks
=
shard
.
worker_num
device_to_vars
=
[[]
for
_
in
range
(
nranks
)]
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
not
is_optimizer_op
(
op
)
or
op
.
type
!=
'c_broadcast'
:
break
var
=
op
.
input_arg_names
[
0
]
root_id
=
op
.
attr
(
'root'
)
device_to_vars
[
root_id
].
insert
(
0
,
var
)
block
.
_remove_op
(
idx
,
sync
=
False
)
insert_idx
=
idx
+
1
for
root_id
,
vars_name
in
enumerate
(
device_to_vars
):
vars_name
=
FuseHelper
.
sort_vars_by_dtype
(
block
,
vars_name
)
groups
=
FuseHelper
.
get_fused_groups
(
block
,
vars_name
,
fuse_size
)
fused_vars
,
insert_num
=
FuseHelper
.
insert_coalesce_tensor
(
block
,
insert_idx
,
groups
,
op_role
,
prefix
=
"Param"
)
for
fused_var
in
fused_vars
:
block
.
_insert_op_without_sync
(
insert_idx
+
insert_num
,
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
root_id
,
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
op_role
})
block
.
_sync_with_cpp
()
def
get_grad_device
(
grad_name
,
shard
):
assert
"@GRAD"
in
grad_name
,
"[{}] should be a grad variable."
.
format
(
grad_name
)
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
eef0a943
...
...
@@ -329,6 +329,7 @@ class ShardingOptimizer(MetaOptimizerBase):
if
self
.
pp_degree
==
1
:
return
strategy
=
self
.
user_defined_strategy
sharding_configs
=
strategy
.
sharding_configs
main_block
=
self
.
_main_program
.
global_block
()
startup_block
=
self
.
_startup_program
.
global_block
()
...
...
@@ -399,6 +400,8 @@ class ShardingOptimizer(MetaOptimizerBase):
first_optimize_op_index
+=
(
len
(
main_block
.
ops
)
-
len_of_ops
)
len_of_ops
=
len
(
main_block
.
ops
)
# NOTE(wangxi): we fused after optimize_cast
optimize_cast
=
sharding_configs
[
'optimize_cast'
]
optimizer_param
=
utils
.
insert_broadcast_param_ops
(
main_block
,
len_of_ops
,
...
...
@@ -407,10 +410,10 @@ class ShardingOptimizer(MetaOptimizerBase):
OpRole
.
Optimize
,
use_calc_stream
=
True
,
rank
=
self
.
dp_rank
,
strategy
=
strategy
)
strategy
=
None
if
optimize_cast
else
strategy
)
logger
.
info
(
"Optimizer param in this rank {}"
.
format
(
optimizer_param
))
if
not
strategy
.
fuse_grad_merge
:
if
not
strategy
.
fuse_grad_merge
and
not
optimize_cast
:
assert
len
(
accumulated_grad_names
)
==
len
(
optimizer_param
)
elif
self
.
hybrid_dp
and
self
.
hybrid_dp_mode
==
"pp_hybrid_dp"
:
insert_allreduce_ops
(
...
...
@@ -458,18 +461,20 @@ class ShardingOptimizer(MetaOptimizerBase):
main_block
.
_sync_with_cpp
()
def
_apply_optimize_offload_pass
(
self
):
def
_apply_optimize_offload_pass
(
self
,
params_grads
):
strategy
=
self
.
user_defined_strategy
sharding_configs
=
strategy
.
sharding_configs
main_block
=
self
.
_main_program
.
global_block
()
startup_block
=
self
.
_startup_program
.
global_block
()
dp_ring_id
=
self
.
dp_ring_id
if
self
.
dp_degree
>
1
else
None
# optimize offload should be enable while gradient merge is enable and
# acc_step is quite large (e.g. >> 100). Since its memcpy could not be
# overlap with calc, otherwise it will slower down training severely.
if
sharding_configs
[
"optimize_offload"
]:
logger
.
info
(
"Sharding with optimize offload !"
)
offload_helper
=
OffloadHelper
()
offload_helper
=
OffloadHelper
(
ring_id
=
dp_ring_id
)
offload_helper
.
offload
(
main_block
,
startup_block
)
# The optimize_cast is already included in offload_fp32param
offload_helper
.
offload_fp32param
(
main_block
,
startup_block
)
...
...
@@ -477,8 +482,17 @@ class ShardingOptimizer(MetaOptimizerBase):
logger
.
info
(
"Sharding with optimize cast !"
)
# NOTE(wangxi): optimize_cast will persist fp16 param, it
# will take more memory, but will be faster. Trade space for time.
offload_helper
=
OffloadHelper
()
offload_helper
.
cast_fp32param_in_optimize
(
main_block
,
startup_block
)
offload_helper
=
OffloadHelper
(
ring_id
=
dp_ring_id
)
if
self
.
_optimizer_sharding
:
offload_helper
.
opt_sharding_cast_fp32param
(
main_block
,
startup_block
,
[
x
[
0
].
name
for
x
in
params_grads
])
# NOTE(wangxi): fused after optimize_cast
utils
.
fuse_opt_broadcast_param_ops
(
main_block
,
dp_ring_id
,
self
.
_shard
,
strategy
=
strategy
)
else
:
offload_helper
.
cast_fp32param_in_optimize
(
main_block
,
startup_block
)
def
_dump_program_for_debug
(
self
):
main_block
=
self
.
_main_program
.
global_block
()
...
...
@@ -525,7 +539,7 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
_insert_loss_grad_scale_op
()
# apply optimize offload or optimize cast
self
.
_apply_optimize_offload_pass
()
self
.
_apply_optimize_offload_pass
(
params_grads
)
# step6: (optional) sharding gradient merge
self
.
_sharding_gradient_merge
()
...
...
@@ -1381,17 +1395,50 @@ class ShardingOptimizer(MetaOptimizerBase):
startup_block
=
self
.
_startup_program
.
global_block
()
params
=
startup_block
.
all_parameters
()
params_name
=
[]
broadcast_params
=
[]
# NOTE(wangxi): if param is not persistable, program.clone will
# failed, so we remove no persistable param, re add param as a var
for
param
in
params
:
broadcast_params
.
append
(
param
)
# optimize_cast need broadcast fp16 param
fp16_param_name
=
param
.
name
+
'.cast_fp16'
if
startup_block
.
has_var
(
fp16_param_name
):
fp16_param
=
startup_block
.
var
(
fp16_param_name
)
broadcast_params
.
append
(
fp16_param
)
for
param
in
broadcast_params
:
params_name
.
append
(
param
.
name
)
if
not
param
.
persistable
:
name
=
param
.
name
shape
=
param
.
shape
dtype
=
param
.
dtype
type
=
param
.
type
lod_level
=
param
.
lod_level
stop_gradient
=
param
.
stop_gradient
trainable
=
param
.
trainable
optimize_attr
=
param
.
optimize_attr
regularizer
=
param
.
regularizer
have_dist_attr
=
False
is_distributed
=
False
if
hasattr
(
param
,
'is_distributed'
):
have_dist_attr
=
True
is_distributed
=
param
.
is_distributed
startup_block
.
_remove_var
(
name
,
sync
=
False
)
var
=
startup_block
.
create_var
(
name
=
name
,
shape
=
shape
,
dtype
=
dtype
,
type
=
type
,
lod_level
=
lod_level
,
stop_gradient
=
stop_gradient
,
trainable
=
trainable
,
persistable
=
False
)
if
have_dist_attr
:
var
.
is_distributed
=
is_distributed
# offload and optimize_cast will insert broadcast op
broadcast_params
=
set
()
for
op
in
startup_block
.
ops
:
if
op
.
type
==
'c_broadcast'
:
broadcast_params
.
add
(
op
.
desc
.
output_arg_names
()[
0
])
for
param
in
params_name
:
if
param
in
broadcast_params
:
continue
startup_block
.
append_op
(
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
...
...
@@ -1399,15 +1446,19 @@ class ShardingOptimizer(MetaOptimizerBase):
attrs
=
{
'ring_id'
:
self
.
dp_ring_id
,
'root'
:
0
,
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
startup_block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
broadcast_params
},
outputs
=
{
'Out'
:
broadcast_params
},
inputs
=
{
'X'
:
params_name
},
outputs
=
{
'Out'
:
params_name
},
attrs
=
{
'ring_id'
:
self
.
dp_ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
startup_block
.
_sync_with_cpp
()
# sharding gradient merge
def
create_persistable_gradients_and_insert_merge_ops
(
self
,
main_block
,
startup_block
,
insert_idx
,
grad_names
,
shard
):
...
...
python/paddle/fluid/tests/unittests/test_fleet_hybrid_meta_optimizer.py
浏览文件 @
eef0a943
...
...
@@ -321,6 +321,82 @@ class TestFleetHybridOptimizer(TestFleetMetaOptimizer):
'c_broadcast'
])
def
test_opt_sharding_with_pp_amp_ckp_fuse_gm_optcast
(
self
):
train_prog
,
startup_prog
=
static
.
Program
(),
static
.
Program
()
avg_cost
,
strategy
=
self
.
pp_net
(
train_prog
,
startup_prog
)
self
.
set_strategy
(
strategy
,
'pipeline'
)
self
.
set_strategy
(
strategy
,
'amp'
)
strategy
.
amp_configs
=
{
'custom_black_varnames'
:
[
'fc_6.b_0'
],
}
strategy
.
recompute
=
True
strategy
.
recompute_configs
=
{
"checkpoints"
:
[
"fc_0.tmp_2"
,
"fc_1.tmp_2"
,
"fc_2.tmp_2"
,
"fc_3.tmp_2"
]
}
strategy
.
sharding
=
True
strategy
.
sharding_configs
=
{
"sharding_degree"
:
1
,
"pp_degree"
:
2
,
"dp_degree"
:
2
,
"_dp_as_optimizer_sharding"
:
True
,
'optimize_cast'
:
True
,
}
strategy
.
fuse_all_reduce_ops
=
True
strategy
.
fuse_grad_size_in_MB
=
32
strategy
.
fuse_grad_merge
=
True
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
train_prog
=
train_prog
.
_pipeline_opt
[
'section_program'
]
startup_prog
=
startup_prog
.
_pipeline_opt
[
'startup_program'
]
# self._debug = True
self
.
debug_program
(
train_prog
,
startup_prog
)
startup_prog_ops
=
startup_prog
.
global_block
().
ops
main_prog_ops
=
train_prog
.
global_block
().
ops
# check program
startup_prog_op_types
=
[
op
.
type
for
op
in
startup_prog_ops
]
main_prog_op_types
=
[
op
.
type
for
op
in
main_prog_ops
]
# global, sharding, pp_send, pp_recv
self
.
assertEqual
(
startup_prog_op_types
,
[
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'c_sync_comm_stream'
])
self
.
assertEqual
(
main_prog_op_types
,
[
'recv_v2'
,
'cast'
,
'mul'
,
'elementwise_add'
,
'cast'
,
'tanh'
,
'cast'
,
'mul'
,
'elementwise_add'
,
'cast'
,
'tanh'
,
'cast'
,
'mul'
,
'elementwise_add'
,
'cast'
,
'tanh'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'cast'
,
'softmax'
,
'cast'
,
'cross_entropy2'
,
'mean'
,
'elementwise_mul'
,
'coalesce_tensor'
,
'coalesce_tensor'
,
'coalesce_tensor'
,
'coalesce_tensor'
,
'coalesce_tensor'
,
'coalesce_tensor'
,
'fill_constant'
,
'elementwise_mul_grad'
,
'mean_grad'
,
'cross_entropy_grad2'
,
'cast'
,
'softmax_grad'
,
'cast'
,
'elementwise_add_grad'
,
'cast'
,
'mul_grad'
,
'cast'
,
'tanh_grad'
,
'cast'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'tanh_grad'
,
'cast'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'cast'
,
'mul'
,
'elementwise_add'
,
'cast'
,
'tanh_grad'
,
'cast'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'c_sync_calc_stream'
,
'send_v2'
,
'cast'
,
'sum'
,
'sum'
,
'cast'
,
'sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_sync_comm_stream'
,
'check_finite_and_unscale'
,
'cast'
,
'c_allreduce_max'
,
'c_allreduce_max'
,
'cast'
,
'update_loss_scaling'
,
'momentum'
,
'cast'
,
'momentum'
,
'cast'
,
'momentum'
,
'cast'
,
'momentum'
,
'momentum'
,
'cast'
,
'coalesce_tensor'
,
'c_broadcast'
,
'c_broadcast'
,
'coalesce_tensor'
,
'c_broadcast'
])
class
TestFleetHybridOptimizerBoundary
(
TestFleetMetaOptimizer
):
def
setUp
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
浏览文件 @
eef0a943
...
...
@@ -922,18 +922,17 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
# ring: mp, pp_group, pp_pair, pp_pair
self
.
assertEqual
(
startup_prog_op_types
,
[
'uniform_random'
,
'cast'
,
'fill_constant'
,
'cast'
,
'uniform_random'
,
'cast'
,
'fill_constant'
,
'cast'
,
'uniform_random'
,
'cast'
,
'fill_constant'
,
'cast'
,
'uniform_random'
,
'cast'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_sync_comm_stream'
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'c_sync_comm_stream'
])
self
.
assertEqual
(
main_prog_op_types
,
[
...
...
@@ -1019,19 +1018,17 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
# ring: mp, pp_group, pp_pair, pp_pair
self
.
assertEqual
(
startup_prog_op_types
,
[
'uniform_random'
,
'cast'
,
'memcpy'
,
'fill_constant'
,
'cast'
,
'memcpy'
,
'uniform_random'
,
'cast'
,
'memcpy'
,
'fill_constant'
,
'cast'
,
'memcpy'
,
'uniform_random'
,
'cast'
,
'memcpy'
,
'fill_constant'
,
'cast'
,
'memcpy'
,
'uniform_random'
,
'cast'
,
'memcpy'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_broadcast'
,
'c
_broadcast
'
,
'c_broadcast'
,
'c
_broadcast'
,
'c_broadcast'
,
'c_broadcast
'
,
'c_broadcast'
,
'c
_broadcast'
,
'c_broadcast'
,
'c_broadcast
'
,
'c_broadcast'
,
'c
_broadcast'
,
'c_broadcast'
,
'c_broadcast
'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_broadcast'
,
'c
ast'
,
'memcpy
'
,
'c_broadcast'
,
'c
ast'
,
'memcpy'
,
'c_broadcast'
,
'cast'
,
'memcpy
'
,
'c_broadcast'
,
'c
ast'
,
'memcpy'
,
'c_broadcast'
,
'cast'
,
'memcpy
'
,
'c_broadcast'
,
'c
ast'
,
'memcpy'
,
'c_broadcast'
,
'cast'
,
'memcpy
'
,
'c_broadcast'
,
'c_sync_comm_stream'
])
...
...
@@ -1122,18 +1119,17 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
# ring: mp, pp_group, pp_pair, pp_pair
self
.
assertEqual
(
startup_prog_op_types
,
[
'uniform_random'
,
'cast'
,
'fill_constant'
,
'cast'
,
'uniform_random'
,
'cast'
,
'fill_constant'
,
'cast'
,
'uniform_random'
,
'cast'
,
'fill_constant'
,
'cast'
,
'uniform_random'
,
'cast'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_sync_comm_stream'
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'cast'
,
'c_broadcast'
,
'c_sync_comm_stream'
])
self
.
assertEqual
(
main_prog_op_types
,
[
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录