未验证 提交 ed9dd7c9 编写于 作者: L lilong12 提交者: GitHub

add send and recv ops (#28590)

* update, test=develop
上级 a829357e
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/recv_v2_op.h"
#include <string>
namespace paddle {
namespace operators {
class RecvOpV2 : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Recv_V2");
int peer = ctx->Attrs().Get<int>("peer");
int ring_id = ctx->Attrs().Get<int>("ring_id");
PADDLE_ENFORCE_GE(
peer, 0,
platform::errors::InvalidArgument(
"The peer (%d) for recv_v2 op must be non-negative.", peer));
PADDLE_ENFORCE_GE(
ring_id, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for recv_v2 op must be non-negative.", ring_id));
auto out_shape = ctx->Attrs().Get<std::vector<int>>("out_shape");
PADDLE_ENFORCE_GE(out_shape.size(), 1,
platform::errors::InvalidArgument(
"The size of the output shape must be greater than 0 "
"but the value given is %d.",
out_shape.size()));
ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
int dtype = ctx.Attr<int>("dtype");
framework::proto::VarType::Type type =
framework::proto::VarType::Type(dtype);
return framework::OpKernelType(type, ctx.GetPlace());
}
};
class RecvOpV2Maker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddOutput("Out", "(Tensor) tensor to receive.");
AddAttr<int>("ring_id", "(int default 0) nccl communication ring id.")
.SetDefault(0);
AddAttr<int>("peer", "(int default 0) rank id for sender.").SetDefault(0);
AddAttr<int>("dtype", "(int default 5('float32')) data type of tensor.")
.SetDefault(5);
AddAttr<std::vector<int>>("out_shape", "shape of the output tensor.")
.SetDefault(std::vector<int>());
AddAttr<bool>(
"use_calc_stream",
"(bool default false) eject CUDA operations to calculation stream.")
.SetDefault(false);
AddComment(R"DOC(
Recv Operator
Reference: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/p2p.html#sendrecv
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_WITHOUT_GRADIENT(recv_v2, ops::RecvOpV2, ops::RecvOpV2Maker);
REGISTER_OP_CPU_KERNEL(recv_v2, ops::RecvOpV2CPUKernel<float>,
ops::RecvOpV2CPUKernel<double>,
ops::RecvOpV2CPUKernel<int>,
ops::RecvOpV2CPUKernel<int64_t>,
ops::RecvOpV2CPUKernel<plat::float16>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/recv_v2_op.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace paddle {
namespace operators {
template <typename T>
class RecvOpV2CUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
int rid = ctx.Attr<int>("ring_id");
PADDLE_ENFORCE_GE(
rid, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for recv_v2 op must be non-negative.", rid));
int peer = ctx.Attr<int>("peer");
PADDLE_ENFORCE_GE(
peer, 0,
platform::errors::InvalidArgument(
"The peer (%d) for recv_v2 op must be non-negative.", peer));
auto out = ctx.Output<framework::LoDTensor>("Out");
auto out_dims = out->dims();
int data_type = ctx.Attr<int>("dtype");
framework::proto::VarType::Type type =
framework::proto::VarType::Type(data_type);
#if defined(PADDLE_WITH_NCCL) && NCCL_VERSION_CODE >= 2703
cudaStream_t stream = nullptr;
auto place = ctx.GetPlace();
auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
if (ctx.Attr<bool>("use_calc_stream")) {
auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
stream = static_cast<platform::CUDADeviceContext *>(dev_ctx)->stream();
} else {
stream = comm->stream();
}
PADDLE_ENFORCE_LT(
peer, comm->nranks(),
platform::errors::InvalidArgument("The value of peer (%d) you set must "
"be less than comm->nranks (%d).",
peer, comm->nranks()));
ncclDataType_t dtype = platform::ToNCCLDataType(type);
// Recv the number of elements to receive first
int numel = 0;
int *numel_ptr = nullptr;
PADDLE_ENFORCE_CUDA_SUCCESS(cudaMalloc(&numel_ptr, sizeof(int)));
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::ncclRecv(static_cast<void *>(numel_ptr), 1, ncclInt,
peer, comm->comm(), stream));
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaMemcpy(&numel, numel_ptr, sizeof(int), cudaMemcpyDeviceToHost));
int rest_numel = 1;
for (int i = 1; i < out_dims.size(); ++i) {
rest_numel = rest_numel * out_dims[i];
}
out_dims[0] = numel / rest_numel;
out->mutable_data<T>(out_dims, place);
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclRecv(
out->data<T>(), numel, dtype, peer, comm->comm(), stream));
VLOG(3) << "rank " << comm->rank() << " recv "
<< framework::product(out->dims()) << " from " << peer;
#else
PADDLE_THROW(platform::errors::Unavailable(
"PaddlePaddle should be compiled with NCCL and "
"NCCL version >= 2.7.3 is needed."));
#endif
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(recv_v2, ops::RecvOpV2CUDAKernel<float>,
ops::RecvOpV2CUDAKernel<double>,
ops::RecvOpV2CUDAKernel<int>,
ops::RecvOpV2CUDAKernel<int64_t>,
ops::RecvOpV2CUDAKernel<plat::float16>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename T>
class RecvOpV2CPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_THROW(platform::errors::Unavailable(
"Do not support recv for cpu kernel now."));
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/send_v2_op.h"
namespace paddle {
namespace operators {
class SendOpV2 : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SendV2");
int peer = ctx->Attrs().Get<int>("peer");
int ring_id = ctx->Attrs().Get<int>("ring_id");
PADDLE_ENFORCE_GE(
peer, 0,
platform::errors::InvalidArgument(
"The peer (%d) for send_v2 op must be non-negative.", peer));
PADDLE_ENFORCE_GE(
ring_id, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for send_v2 op must be non-negative.", ring_id));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};
class SendOpV2Maker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "(Tensor) tensor to be sent.");
AddAttr<int>("ring_id", "(int default 0) nccl communication ring id.")
.SetDefault(0);
AddAttr<int>("peer", "(int default 0) rank id for receiver.").SetDefault(0);
AddAttr<bool>(
"use_calc_stream",
"(bool default false) eject CUDA operations to calculation stream.")
.SetDefault(false);
AddComment(R"DOC(
Send Operator
Reference: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/p2p.html#sendrecv
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_WITHOUT_GRADIENT(send_v2, ops::SendOpV2, ops::SendOpV2Maker);
REGISTER_OP_CPU_KERNEL(send_v2, ops::SendOpV2CPUKernel<float>,
ops::SendOpV2CPUKernel<double>,
ops::SendOpV2CPUKernel<int>,
ops::SendOpV2CPUKernel<int64_t>,
ops::SendOpV2CPUKernel<plat::float16>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/send_v2_op.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace paddle {
namespace operators {
template <typename T>
class SendOpV2CUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto x = ctx.Input<framework::LoDTensor>("X");
int numel = x->numel();
int rid = ctx.Attr<int>("ring_id");
PADDLE_ENFORCE_GE(
rid, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for send_v2 op must be non-negative.", rid));
int peer = ctx.Attr<int>("peer");
PADDLE_ENFORCE_GE(
peer, 0,
platform::errors::InvalidArgument(
"The peer (%d) for send_v2 op must be non-negative.", peer));
cudaStream_t stream = nullptr;
auto place = ctx.GetPlace();
#if defined(PADDLE_WITH_NCCL) && NCCL_VERSION_CODE >= 2703
auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
if (ctx.Attr<bool>("use_calc_stream")) {
auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
} else {
stream = comm->stream();
}
PADDLE_ENFORCE_LT(
peer, comm->nranks(),
platform::errors::InvalidArgument("The value of peer (%d) you set must "
"be less than comm->nranks (%d).",
peer, comm->nranks()));
ncclDataType_t dtype = platform::ToNCCLDataType(x->type());
// Send number of elements to the receiver, as the receiver may have
// no information of the Tensor size.
int* numel_ptr = nullptr;
PADDLE_ENFORCE_CUDA_SUCCESS(cudaMalloc(&numel_ptr, sizeof(int)));
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaMemcpy(numel_ptr, &numel, sizeof(int), cudaMemcpyHostToDevice));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclSend(
numel_ptr, 1, ncclInt, peer, comm->comm(), stream));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclSend(
x->data<T>(), numel, dtype, peer, comm->comm(), stream));
VLOG(3) << "rank " << comm->rank() << " send "
<< framework::product(x->dims()) << " to " << peer;
#else
PADDLE_THROW(platform::errors::Unavailable(
"PaddlePaddle should be compiled with NCCL "
"and NCCL version >= 2.7.3 is needed."));
#endif
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(send_v2, ops::SendOpV2CUDAKernel<float>,
ops::SendOpV2CUDAKernel<double>,
ops::SendOpV2CUDAKernel<int>,
ops::SendOpV2CUDAKernel<int64_t>,
ops::SendOpV2CUDAKernel<plat::float16>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename T>
class SendOpV2CPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_THROW(platform::errors::Unavailable(
"Do not support send for cpu kernel now."));
}
};
} // namespace operators
} // namespace paddle
...@@ -64,6 +64,7 @@ if(NOT WITH_GPU OR WIN32) ...@@ -64,6 +64,7 @@ if(NOT WITH_GPU OR WIN32)
LIST(REMOVE_ITEM TEST_OPS test_broadcast) LIST(REMOVE_ITEM TEST_OPS test_broadcast)
LIST(REMOVE_ITEM TEST_OPS test_collective_reduce) LIST(REMOVE_ITEM TEST_OPS test_collective_reduce)
LIST(REMOVE_ITEM TEST_OPS test_collective_scatter) LIST(REMOVE_ITEM TEST_OPS test_collective_scatter)
LIST(REMOVE_ITEM TEST_OPS test_collective_sendrecv)
LIST(REMOVE_ITEM TEST_OPS test_reducescatter) LIST(REMOVE_ITEM TEST_OPS test_reducescatter)
LIST(REMOVE_ITEM TEST_OPS test_reducescatter_api) LIST(REMOVE_ITEM TEST_OPS test_reducescatter_api)
LIST(REMOVE_ITEM TEST_OPS test_collective_reduce_api) LIST(REMOVE_ITEM TEST_OPS test_collective_reduce_api)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import os
import sys
import signal
import time
import socket
from contextlib import closing
from six import string_types
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
import unittest
from multiprocessing import Process
import paddle.fluid.layers as layers
from functools import reduce
from test_collective_base import TestCollectiveRunnerBase, runtime_main
paddle.enable_static()
class TestCollectiveSendRecv(TestCollectiveRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program):
ring_id = self.global_ring_id
with fluid.program_guard(main_prog, startup_program):
tindata = layers.data(
name="tindata", shape=[10, 1000], dtype='float64')
if self.rank == 0:
main_prog.global_block().append_op(
type="send_v2",
inputs={'X': tindata},
attrs={
'ring_id': ring_id,
'peer': 1,
'use_calc_stream': True
})
else:
main_prog.global_block().append_op(
type="recv_v2",
outputs={'Out': tindata},
attrs={
'peer': 0,
'ring_id': ring_id,
'dtype': tindata.dtype,
'out_shape': tindata.shape,
'use_calc_stream': True,
})
return tindata
if __name__ == "__main__":
runtime_main(TestCollectiveSendRecv, "sendrecv", 0)
...@@ -103,6 +103,7 @@ class TestCollectiveRunnerBase(object): ...@@ -103,6 +103,7 @@ class TestCollectiveRunnerBase(object):
nranks = 2 nranks = 2
self.initCommunicator(startup_prog, rank, nranks, True, self.initCommunicator(startup_prog, rank, nranks, True,
current_endpoint, endpoints) current_endpoint, endpoints)
self.rank = rank
result = self.get_model(train_prog, startup_prog) result = self.get_model(train_prog, startup_prog)
device_id = int(os.getenv("FLAGS_selected_gpus", "0")) device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
place = fluid.CUDAPlace( place = fluid.CUDAPlace(
...@@ -268,6 +269,11 @@ class TestDistBase(unittest.TestCase): ...@@ -268,6 +269,11 @@ class TestDistBase(unittest.TestCase):
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
tr1_out, need_result2, rtol=1e-05, atol=1e-05)) tr1_out, need_result2, rtol=1e-05, atol=1e-05))
elif col_type == "sendrecv":
need_result = input1
self.assertTrue(
np.allclose(
tr1_out, need_result, rtol=1e-05, atol=1e-05))
elif col_type == "reduce_slicegather": elif col_type == "reduce_slicegather":
slicesize = input1.shape[0] // 2 slicesize = input1.shape[0] // 2
tmp10 = input1[0:slicesize] tmp10 = input1[0:slicesize]
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
from test_collective_base import TestDistBase
paddle.enable_static()
class TestSendRecvOp(TestDistBase):
def _setup_config(self):
pass
def test_sendrecv(self):
self.check_with_place("collective_sendrecv_op.py", "sendrecv")
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册