Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
eae4bf5b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eae4bf5b
编写于
9月 07, 2021
作者:
N
niuliling123
提交者:
GitHub
9月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Modify the elementwise op according to the kernel primitive API (#34456)
上级
b211f02b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
180 addition
and
408 deletion
+180
-408
paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h
...fluid/operators/elementwise/elementwise_op_broadcast.cu.h
+116
-273
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
+64
-135
未找到文件。
paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h
浏览文件 @
eae4bf5b
...
...
@@ -15,10 +15,14 @@
#pragma once
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
namespace
paddle
{
namespace
operators
{
#define MAX_INPUT_NUM 3 // the max num of ET for BroadcacstConfig
namespace
kps
=
paddle
::
operators
::
kernel_primitives
;
struct
DimensionsTransform
{
using
DimVector
=
std
::
vector
<
int64_t
>
;
typedef
void
(
*
MergeFunctor
)(
bool
&
,
std
::
vector
<
DimVector
>
&
,
DimVector
&
,
...
...
@@ -161,202 +165,113 @@ struct DimensionsTransform {
}
};
struct
StridesCalculation
{
std
::
vector
<
std
::
vector
<
uint32_t
>>
strides
;
std
::
vector
<
platform
::
FastDivMod
>
divmoders
;
private:
// To calculate the strides of each input_tensor.
__inline__
void
CalculateStrides
(
int
N
,
int
dim_size
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
in_dims
)
{
for
(
int
j
=
0
;
j
<
N
;
++
j
)
{
for
(
int
i
=
0
;
i
<
dim_size
;
++
i
)
{
strides
[
j
][
i
]
=
in_dims
[
j
][
i
]
==
1
?
0
:
strides
[
j
][
i
];
strides
[
j
][
i
]
=
(
i
!=
0
&&
strides
[
j
][
i
]
!=
0
)
?
std
::
accumulate
(
in_dims
[
j
].
begin
(),
in_dims
[
j
].
begin
()
+
i
,
1
,
std
::
multiplies
<
int64_t
>
())
:
strides
[
j
][
i
];
}
}
}
public:
explicit
StridesCalculation
(
const
int64_t
&
dim_size
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
in_dims
,
const
std
::
vector
<
int64_t
>
&
out_dims
)
{
const
auto
N
=
in_dims
.
size
();
divmoders
.
resize
(
dim_size
);
strides
.
resize
(
N
,
std
::
vector
<
uint32_t
>
(
dim_size
,
1
));
for
(
int
i
=
0
;
i
<
dim_size
;
++
i
)
{
divmoders
[
i
]
=
platform
::
FastDivMod
(
out_dims
[
i
]);
}
CalculateStrides
(
N
,
dim_size
,
in_dims
);
}
};
template
<
typename
InT
,
typename
OutT
,
typename
Functor
,
ElementwiseType
ET
,
int
VecSize
,
int
kDims
>
struct
BroadcastArgsWrapper
{
using
InVecType
=
platform
::
AlignedVector
<
InT
,
VecSize
>
;
using
OutVecType
=
platform
::
AlignedVector
<
OutT
,
VecSize
>
;
OutT
*
out_data
;
OutVecType
*
vec_out_data
;
const
InT
*
__restrict__
in_data
[
ET
];
const
InVecType
*
__restrict__
vec_in_data
[
ET
];
bool
no_broadcast
[
ET
];
platform
::
FastDivMod
divmoders
[
kDims
];
uint32_t
strides
[
ET
][
framework
::
DDim
::
kMaxRank
];
uint32_t
scalar_cal_offset
;
Functor
func
;
HOSTDEVICE
BroadcastArgsWrapper
(
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
framework
::
Tensor
*
out
,
int
scalar_cal_offset
,
Functor
func
,
const
StridesCalculation
&
offset_calculator
)
:
scalar_cal_offset
(
scalar_cal_offset
),
func
(
func
)
{
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
in_data
[
j
]
=
ins
[
j
]
->
data
<
InT
>
();
vec_in_data
[
j
]
=
reinterpret_cast
<
const
InVecType
*>
(
in_data
[
j
]);
no_broadcast
[
j
]
=
ins
[
j
]
->
dims
()
==
out
->
dims
()
?
true
:
false
;
memcpy
(
strides
[
j
],
offset_calculator
.
strides
[
j
].
data
(),
kDims
*
sizeof
(
uint32_t
));
}
out_data
=
out
->
data
<
OutT
>
();
vec_out_data
=
reinterpret_cast
<
OutVecType
*>
(
out_data
);
memcpy
(
divmoders
,
offset_calculator
.
divmoders
.
data
(),
kDims
*
sizeof
(
platform
::
FastDivMod
));
}
__device__
__forceinline__
uint32_t
GetOffsetByDivmod
(
int
idx
,
int
in_idx
)
{
uint32_t
offset
=
0
;
#pragma unroll(kDims)
for
(
int
i
=
0
;
i
<
kDims
;
++
i
)
{
auto
fast_divmoder
=
divmoders
[
i
].
Divmod
(
idx
);
idx
=
fast_divmoder
.
val
[
0
];
offset
+=
fast_divmoder
.
val
[
1
]
*
strides
[
in_idx
][
i
];
}
return
offset
;
}
__device__
__forceinline__
void
LoadVectorizedDataCommon
(
InVecType
*
vector_args
,
int
tid
,
int
idx
)
{
*
vector_args
=
vec_in_data
[
idx
][
tid
];
}
__device__
__forceinline__
void
LoadVectorizedDataByDivmod
(
InT
*
scalar_args
,
int
tid
,
int
idx
)
{
int
index
=
tid
*
VecSize
;
#pragma unroll(VecSize)
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
uint32_t
offset
=
GetOffsetByDivmod
(
index
+
i
,
idx
);
scalar_args
[
i
]
=
in_data
[
idx
][
offset
];
}
}
__device__
__forceinline__
void
LoadScalarizedDataCommon
(
InT
args
[],
int
tid
,
int
idx
)
{
args
[
idx
]
=
in_data
[
idx
][
tid
+
scalar_cal_offset
];
}
__device__
__forceinline__
void
LoadScalarizedDataByDivmod
(
InT
args
[],
int
tid
,
int
idx
)
{
auto
offset
=
GetOffsetByDivmod
(
tid
+
scalar_cal_offset
,
idx
);
args
[
idx
]
=
in_data
[
idx
][
offset
];
}
__device__
__forceinline__
void
LoadVectorizedData
(
InT
(
*
args
)[
VecSize
],
int
tid
)
{
#pragma unroll(ET)
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
if
(
no_broadcast
[
j
])
{
InVecType
*
vector_args
=
reinterpret_cast
<
InVecType
*>
(
args
[
j
]);
LoadVectorizedDataCommon
(
vector_args
,
tid
,
j
);
}
else
{
LoadVectorizedDataByDivmod
(
args
[
j
],
tid
,
j
);
}
}
template
<
typename
T
,
int
VecSize
,
int
ShapeSize
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
LoadData
(
T
*
dst
,
const
T
*
__restrict__
src
,
uint32_t
block_offset
,
const
kps
::
details
::
BroadcastConfig
<
ShapeSize
>
&
config
,
int
numel
,
int
num
,
bool
need_broadcast
)
{
// numel : whole num of output
// num: how many data will be deal with in this time
if
(
need_broadcast
)
{
kps
::
ReadDataBc
<
T
,
VecSize
,
1
,
1
,
ShapeSize
,
IsBoundary
>
(
dst
,
src
,
block_offset
,
config
,
numel
,
1
,
1
);
}
else
{
kps
::
ReadData
<
T
,
VecSize
,
1
,
1
,
IsBoundary
>
(
dst
,
src
+
block_offset
,
num
);
}
}
__device__
__forceinline__
void
LoadScalarizedData
(
InT
args
[],
int
tid
)
{
#pragma unroll(ET)
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
if
(
no_broadcast
[
j
])
{
LoadScalarizedDataCommon
(
args
,
tid
,
j
);
}
else
{
LoadScalarizedDataByDivmod
(
args
,
tid
,
j
);
}
}
template
<
ElementwiseType
ET
,
typename
InT
,
typename
OutT
,
int
ShapeSize
,
int
VecSize
,
typename
Functor
,
bool
IsBoundary
=
false
>
__device__
void
DealSegment
(
const
framework
::
Array
<
const
InT
*
__restrict__
,
ET
>
&
in
,
OutT
*
out
,
const
framework
::
Array
<
bool
,
MAX_INPUT_NUM
>
&
use_broadcast
,
uint32_t
numel
,
const
framework
::
Array
<
kps
::
details
::
BroadcastConfig
<
ShapeSize
>
,
MAX_INPUT_NUM
>
&
configlists
,
int
num
,
Functor
func
)
{
InT
args
[
ET
][
VecSize
];
OutT
result
[
VecSize
];
int
block_offset
=
blockIdx
.
x
*
blockDim
.
x
*
VecSize
;
// load
#pragma unroll
for
(
int
i
=
0
;
i
<
ET
;
i
++
)
{
kps
::
Init
<
InT
,
VecSize
>
(
args
[
i
],
static_cast
<
InT
>
(
1.0
f
));
LoadData
<
InT
,
VecSize
,
ShapeSize
,
IsBoundary
>
(
args
[
i
],
in
[
i
],
block_offset
,
configlists
[
i
],
numel
,
num
,
use_broadcast
[
i
]);
}
__device__
__forceinline__
void
StoreVectorizedData
(
OutVecType
vec_args_out
,
int
tid
)
{
vec_out_data
[
tid
]
=
vec_args_out
;
// compute
if
(
ET
==
kUnary
)
{
kps
::
ElementwiseUnary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
func
);
}
else
if
(
ET
==
kBinary
)
{
kps
::
ElementwiseBinary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
args
[
1
],
func
);
}
else
{
kps
::
ElementwiseTernary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
args
[
1
],
args
[
2
],
func
);
}
// compute
kps
::
WriteData
<
OutT
,
VecSize
,
1
,
1
,
IsBoundary
>
(
out
+
block_offset
,
result
,
num
);
}
__device__
__forceinline__
void
StoreScalarizedData
(
OutT
args_out
,
int
tid
)
{
out_data
[
scalar_cal_offset
+
tid
]
=
args_out
;
template
<
ElementwiseType
ET
,
typename
InT
,
typename
OutT
,
int
ShapeSize
,
int
VecSize
,
typename
Functor
>
__global__
void
BroadcastKernel
(
framework
::
Array
<
const
InT
*
__restrict__
,
ET
>
in
,
OutT
*
out
,
framework
::
Array
<
bool
,
MAX_INPUT_NUM
>
use_broadcast
,
uint32_t
numel
,
framework
::
Array
<
kps
::
details
::
BroadcastConfig
<
ShapeSize
>
,
MAX_INPUT_NUM
>
configlists
,
int
main_tid
,
int
tail_tid
,
Functor
func
)
{
int
block_offset
=
blockIdx
.
x
*
blockDim
.
x
*
VecSize
;
// data offset of this block
if
(
blockIdx
.
x
<
main_tid
)
{
int
num
=
blockDim
.
x
*
VecSize
;
// blockIdx.x < main_tid
DealSegment
<
ET
,
InT
,
OutT
,
ShapeSize
,
VecSize
,
Functor
,
false
>
(
in
,
out
,
use_broadcast
,
numel
,
configlists
,
num
,
func
);
}
else
{
// reminder
int
num
=
tail_tid
;
DealSegment
<
ET
,
InT
,
OutT
,
ShapeSize
,
VecSize
,
Functor
,
true
>
(
in
,
out
,
use_broadcast
,
numel
,
configlists
,
num
,
func
);
}
};
template
<
typename
InT
,
typename
OutT
,
typename
BroadcastArgsWrapper
,
ElementwiseType
ET
>
__device__
inline
void
ScalarizedBroadcastKernelImpl
(
BroadcastArgsWrapper
broadcast_wrapper
,
int
tid
)
{
InT
args
[
ET
];
OutT
args_out
;
broadcast_wrapper
.
LoadScalarizedData
(
args
,
tid
);
// Calcualtion of the in_tensor data.
args_out
=
broadcast_wrapper
.
func
(
args
);
broadcast_wrapper
.
StoreScalarizedData
(
args_out
,
tid
);
}
template
<
typename
InT
,
typename
OutT
,
typename
BroadcastArgsWrapper
,
ElementwiseType
ET
,
int
VecSize
>
__device__
inline
void
VectorizedBroadcastKernelImpl
(
BroadcastArgsWrapper
broadcast_wrapper
,
int
tid
)
{
using
OutVecType
=
platform
::
AlignedVector
<
OutT
,
VecSize
>
;
OutVecType
args_out
;
InT
ins
[
ET
]
;
InT
args
[
ET
][
VecSize
]
;
broadcast_wrapper
.
LoadVectorizedData
(
args
,
tid
)
;
template
<
typename
InT
,
typename
OutT
,
ElementwiseType
ET
,
int
VecSize
,
int
Size
,
typename
Functor
>
void
LaunchKernel
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
framework
::
Tensor
*
out
,
Functor
func
,
DimensionsTransform
merge_dims
)
{
int
numel
=
out
->
numel
()
;
const
int
threads
=
256
;
int
blocks
=
((
numel
+
VecSize
-
1
)
/
VecSize
+
threads
-
1
)
/
threads
;
#pragma unroll(VecSize)
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
#pragma unroll(ET)
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
ins
[
j
]
=
args
[
j
][
i
];
int
main_tid
=
numel
/
(
VecSize
*
threads
);
int
tail_tid
=
numel
%
(
VecSize
*
threads
);
auto
stream
=
ctx
.
stream
();
OutT
*
out_data
=
out
->
data
<
OutT
>
();
framework
::
Array
<
kps
::
details
::
BroadcastConfig
<
Size
>
,
MAX_INPUT_NUM
>
configlists
;
framework
::
Array
<
bool
,
MAX_INPUT_NUM
>
use_broadcast
;
framework
::
Array
<
const
InT
*
__restrict__
,
ET
>
ins_data
;
for
(
int
i
=
0
;
i
<
ET
;
i
++
)
{
use_broadcast
[
i
]
=
(
ins
[
i
]
->
numel
()
!=
numel
);
ins_data
[
i
]
=
ins
[
i
]
->
data
<
InT
>
();
if
(
use_broadcast
[
i
])
{
// get the broadcast config,
// if data shape is[m, n], then you should set data_dim = {n, m}
// eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
configlists
[
i
]
=
kps
::
details
::
BroadcastConfig
<
Size
>
(
merge_dims
.
out_dims
,
merge_dims
.
in_dims
[
i
],
merge_dims
.
dim_size
);
}
args_out
.
val
[
i
]
=
broadcast_wrapper
.
func
(
ins
);
}
broadcast_wrapper
.
StoreVectorizedData
(
args_out
,
tid
);
}
template
<
typename
InT
,
typename
OutT
,
typename
BroadcastArgsWrapper
,
ElementwiseType
ET
,
int
VecSize
>
__global__
void
ElementwiseBroadcastKernel
(
BroadcastArgsWrapper
broadcast_wrapper
,
int
main_tid
,
int
tail_tid
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
// Vectorized calculation of major data whose length is the max multipler of
// VecSize,
// eg: Calcualting the front 1024-length data in total 1027 data once VecSize
// is 4.
if
(
tid
<
main_tid
)
{
VectorizedBroadcastKernelImpl
<
InT
,
OutT
,
BroadcastArgsWrapper
,
ET
,
VecSize
>
(
broadcast_wrapper
,
tid
);
}
// Scalarzed calculation of rest data whose lenght cannot fulfill VecSize.
// eg: Calcualting the rest 3-length data in total 1027 data once VecSize is
// 4.
if
(
tid
<
tail_tid
)
{
ScalarizedBroadcastKernelImpl
<
InT
,
OutT
,
BroadcastArgsWrapper
,
ET
>
(
broadcast_wrapper
,
tid
);
}
BroadcastKernel
<
ET
,
InT
,
OutT
,
Size
,
VecSize
,
Functor
><<<
blocks
,
threads
,
0
,
stream
>>>
(
ins_data
,
out_data
,
use_broadcast
,
numel
,
configlists
,
main_tid
,
tail_tid
,
func
);
}
template
<
typename
InT
,
typename
OutT
,
ElementwiseType
ET
,
int
VecSize
,
...
...
@@ -365,98 +280,24 @@ void LaunchBroadcastKernelForDifferentDimSize(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
framework
::
Tensor
*
out
,
int
axis
,
Functor
func
)
{
int
numel
=
out
->
numel
();
int
threads
=
GetThreadsConfig
(
ctx
,
numel
,
VecSize
);
int
blocks
=
((
numel
+
VecSize
-
1
)
/
VecSize
+
threads
-
1
)
/
threads
;
int
main_tid
=
numel
/
VecSize
;
int
tail_tid
=
numel
%
VecSize
;
int
vec_len
=
main_tid
*
VecSize
;
auto
stream
=
ctx
.
stream
();
const
auto
merge_dims
=
DimensionsTransform
(
ins
,
out
->
dims
(),
axis
);
const
auto
offset_calculator
=
StridesCalculation
(
merge_dims
.
dim_size
,
merge_dims
.
in_dims
,
merge_dims
.
out_dims
);
#define DIM_SIZE(size) \
case size: { \
LaunchKernel<InT, OutT, ET, VecSize, size, Functor>(ctx, ins, out, func, \
merge_dims); \
} break;
switch
(
merge_dims
.
dim_size
)
{
case
1
:
{
auto
broadcast_wrapper
=
BroadcastArgsWrapper
<
InT
,
OutT
,
Functor
,
ET
,
VecSize
,
1
>
(
ins
,
out
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
InT
,
OutT
,
decltype
(
broadcast_wrapper
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
broadcast_wrapper
,
main_tid
,
tail_tid
);
break
;
}
case
2
:
{
auto
broadcast_wrapper
=
BroadcastArgsWrapper
<
InT
,
OutT
,
Functor
,
ET
,
VecSize
,
2
>
(
ins
,
out
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
InT
,
OutT
,
decltype
(
broadcast_wrapper
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
broadcast_wrapper
,
main_tid
,
tail_tid
);
break
;
}
case
3
:
{
auto
broadcast_wrapper
=
BroadcastArgsWrapper
<
InT
,
OutT
,
Functor
,
ET
,
VecSize
,
3
>
(
ins
,
out
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
InT
,
OutT
,
decltype
(
broadcast_wrapper
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
broadcast_wrapper
,
main_tid
,
tail_tid
);
break
;
}
case
4
:
{
auto
broadcast_wrapper
=
BroadcastArgsWrapper
<
InT
,
OutT
,
Functor
,
ET
,
VecSize
,
4
>
(
ins
,
out
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
InT
,
OutT
,
decltype
(
broadcast_wrapper
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
broadcast_wrapper
,
main_tid
,
tail_tid
);
break
;
}
case
5
:
{
auto
broadcast_wrapper
=
BroadcastArgsWrapper
<
InT
,
OutT
,
Functor
,
ET
,
VecSize
,
5
>
(
ins
,
out
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
InT
,
OutT
,
decltype
(
broadcast_wrapper
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
broadcast_wrapper
,
main_tid
,
tail_tid
);
break
;
}
case
6
:
{
auto
broadcast_wrapper
=
BroadcastArgsWrapper
<
InT
,
OutT
,
Functor
,
ET
,
VecSize
,
6
>
(
ins
,
out
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
InT
,
OutT
,
decltype
(
broadcast_wrapper
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
broadcast_wrapper
,
main_tid
,
tail_tid
);
break
;
}
case
7
:
{
auto
broadcast_wrapper
=
BroadcastArgsWrapper
<
InT
,
OutT
,
Functor
,
ET
,
VecSize
,
7
>
(
ins
,
out
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
InT
,
OutT
,
decltype
(
broadcast_wrapper
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
broadcast_wrapper
,
main_tid
,
tail_tid
);
break
;
}
case
8
:
{
auto
broadcast_wrapper
=
BroadcastArgsWrapper
<
InT
,
OutT
,
Functor
,
ET
,
VecSize
,
8
>
(
ins
,
out
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
InT
,
OutT
,
decltype
(
broadcast_wrapper
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
broadcast_wrapper
,
main_tid
,
tail_tid
);
break
;
}
default:
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The maximum dimension of input tensor is expected to be less than "
"%d, but recieved %d.
\n
"
,
merge_dims
.
dim_size
,
framework
::
DDim
::
kMaxRank
));
}
DIM_SIZE
(
1
);
DIM_SIZE
(
2
);
DIM_SIZE
(
3
);
DIM_SIZE
(
4
);
DIM_SIZE
(
5
);
DIM_SIZE
(
6
);
DIM_SIZE
(
7
);
DIM_SIZE
(
8
);
}
#undef DIM_SIZE
}
template
<
ElementwiseType
ET
,
typename
InT
,
typename
OutT
,
typename
Functor
>
...
...
@@ -528,5 +369,7 @@ void LaunchElementwiseCudaKernel(
}
}
#undef MAX_INPUT_NUM
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
浏览文件 @
eae4bf5b
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/fast_divmod.h"
...
...
@@ -26,6 +27,7 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
namespace
kps
=
paddle
::
operators
::
kernel_primitives
;
enum
ElementwiseType
{
kUnary
=
1
,
kBinary
=
2
,
kTernary
=
3
};
/*
...
...
@@ -67,121 +69,74 @@ int GetVectorizedSizeForIO(const std::vector<const framework::Tensor *> &ins,
return
vec_size
;
}
template
<
ElementwiseType
ET
,
int
VecSize
,
typename
InT
,
typename
OutT
>
struct
ElementwiseDataWrapper
{
using
InVecType
=
platform
::
AlignedVector
<
InT
,
VecSize
>
;
using
OutVecType
=
platform
::
AlignedVector
<
OutT
,
VecSize
>
;
const
InT
*
__restrict__
in_data
[
ET
];
OutT
*
out_data
;
uint32_t
scalar_cal_offset
;
HOSTDEVICE
ElementwiseDataWrapper
(
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
std
::
vector
<
framework
::
Tensor
*>
*
outs
,
uint32_t
scalar_cal_offset
)
:
scalar_cal_offset
(
scalar_cal_offset
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
ET
;
++
i
)
{
in_data
[
i
]
=
ins
[
i
]
->
data
<
InT
>
();
}
out_data
=
(
*
outs
)[
0
]
->
data
<
OutT
>
();
}
inline
__device__
void
LoadVectorizedData
(
InVecType
vec_args
[],
int
tid
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
ET
;
++
i
)
{
const
InVecType
*
in_vec_data
=
reinterpret_cast
<
const
InVecType
*>
(
in_data
[
i
]);
vec_args
[
i
]
=
in_vec_data
[
tid
];
}
}
inline
__device__
void
LoadScalarizedData
(
InT
args
[],
int
tid
)
{
template
<
ElementwiseType
ET
,
int
VecSize
,
typename
InT
,
typename
OutT
,
typename
Functor
,
bool
IsBoundary
>
__device__
void
DealSegment
(
const
framework
::
Array
<
const
InT
*
__restrict__
,
ET
>
&
in
,
OutT
*
out
,
int
num
,
Functor
func
)
{
int
data_offset
=
VecSize
*
blockIdx
.
x
*
blockDim
.
x
;
InT
args
[
ET
][
VecSize
];
OutT
result
[
VecSize
];
// load data
#pragma unroll
for
(
int
i
=
0
;
i
<
ET
;
++
i
)
{
args
[
i
]
=
in_data
[
i
][
tid
+
scalar_cal_offset
];
}
}
inline
__device__
void
StoreVectorizedData
(
OutVecType
res
,
int
tid
)
{
OutVecType
*
out_vec
=
reinterpret_cast
<
OutVecType
*>
(
out_data
);
out_vec
[
tid
]
=
res
;
}
inline
__device__
void
StoreScalarizedData
(
OutT
res
,
int
tid
)
{
out_data
[
tid
+
scalar_cal_offset
]
=
res
;
for
(
int
i
=
0
;
i
<
ET
;
i
++
)
{
kps
::
Init
<
InT
,
VecSize
>
(
args
[
i
],
static_cast
<
InT
>
(
1.0
f
));
kps
::
ReadData
<
InT
,
VecSize
,
1
,
1
,
IsBoundary
>
(
args
[
i
],
in
[
i
]
+
data_offset
,
num
);
}
};
template
<
ElementwiseType
ET
,
int
VecSize
,
typename
ElementwiseWrapper
,
typename
InT
,
typename
OutT
,
typename
Functor
>
__device__
inline
void
VectorizedKernelImpl
(
ElementwiseWrapper
data
,
Functor
func
,
int
tid
)
{
using
InVecType
=
platform
::
AlignedVector
<
InT
,
VecSize
>
;
using
OutVecType
=
platform
::
AlignedVector
<
OutT
,
VecSize
>
;
InVecType
ins_vec
[
ET
];
OutVecType
out_vec
;
InT
*
ins_ptr
[
ET
];
InT
ins
[
ET
];
#pragma unroll
for
(
int
i
=
0
;
i
<
ET
;
++
i
)
{
ins_ptr
[
i
]
=
reinterpret_cast
<
InT
*>
(
&
(
ins_vec
[
i
]));
}
// load
data
.
LoadVectorizedData
(
ins_vec
,
tid
);
// compute
#pragma unroll
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
#pragma unroll
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
ins
[
j
]
=
ins_ptr
[
j
][
i
];
}
out_vec
.
val
[
i
]
=
func
(
ins
);
// compute
if
(
ET
==
kUnary
)
{
kps
::
ElementwiseUnary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
func
);
}
else
if
(
ET
==
kBinary
)
{
kps
::
ElementwiseBinary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
args
[
1
],
func
);
}
else
{
kps
::
ElementwiseTernary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
args
[
1
],
args
[
2
],
func
);
}
// store
data
.
StoreVectorizedData
(
out_vec
,
tid
);
}
template
<
ElementwiseType
ET
,
typename
ElementwiseWrapper
,
typename
InT
,
typename
OutT
,
typename
Functor
>
__device__
inline
void
ScalarKernelImpl
(
ElementwiseWrapper
data
,
Functor
func
,
int
tid
)
{
InT
ins
[
ET
];
OutT
out
;
// load
data
.
LoadScalarizedData
(
ins
,
tid
);
// compute
out
=
func
(
ins
);
// store
data
.
StoreScalarizedData
(
out
,
tid
);
kps
::
WriteData
<
OutT
,
VecSize
,
1
,
1
,
IsBoundary
>
(
out
+
data_offset
,
result
,
num
);
}
template
<
ElementwiseType
ET
,
typename
ElementwiseWrapper
,
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
>
__global__
void
VectorizedKernel
(
ElementwiseWrapper
data
,
int
main_tid
,
int
tail_tid
,
Functor
func
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
main_tid
)
{
VectorizedKernelImpl
<
ET
,
VecSize
,
ElementwiseWrapper
,
InT
,
OutT
,
Functor
>
(
data
,
func
,
tid
);
}
if
(
tid
<
tail_tid
)
{
ScalarKernelImpl
<
ET
,
ElementwiseWrapper
,
InT
,
OutT
,
Functor
>
(
data
,
func
,
tid
);
template
<
ElementwiseType
ET
,
int
VecSize
,
typename
InT
,
typename
OutT
,
typename
Functor
>
__global__
void
ElementVectorizeKernel
(
framework
::
Array
<
const
InT
*
__restrict__
,
ET
>
in
,
OutT
*
out
,
int
size
,
Functor
func
)
{
int
data_offset
=
VecSize
*
blockIdx
.
x
*
blockDim
.
x
;
int
num
=
size
-
data_offset
;
// the num this time have to deal with
if
(
VecSize
*
blockDim
.
x
>
num
)
{
// reminder segment
DealSegment
<
ET
,
VecSize
,
InT
,
OutT
,
Functor
,
true
>
(
in
,
out
,
num
,
func
);
}
else
{
// complete segment
DealSegment
<
ET
,
VecSize
,
InT
,
OutT
,
Functor
,
false
>
(
in
,
out
,
num
,
func
);
}
}
template
<
ElementwiseType
ET
,
typename
ElementwiseWrapper
,
typename
InT
,
typename
OutT
,
typename
Functor
>
__global__
void
ScalarKernel
(
ElementwiseWrapper
data
,
int
numel
,
Functor
func
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
numel
)
{
ScalarKernelImpl
<
ET
,
ElementwiseWrapper
,
InT
,
OutT
,
Functor
>
(
data
,
func
,
tid
);
template
<
ElementwiseType
ET
,
typename
InT
,
typename
OutT
,
typename
Functor
,
int
VecSize
>
void
ElementwiseCudaKernel
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
std
::
vector
<
framework
::
Tensor
*>
*
outs
,
Functor
func
)
{
auto
numel
=
ins
[
0
]
->
numel
();
int
block_size
=
GetThreadsConfig
(
ctx
,
numel
,
VecSize
);
int
grid_size
=
((
numel
+
VecSize
-
1
)
/
VecSize
+
block_size
-
1
)
/
block_size
;
auto
stream
=
ctx
.
stream
();
OutT
*
out
=
(
*
outs
)[
0
]
->
data
<
OutT
>
();
framework
::
Array
<
const
InT
*
__restrict__
,
ET
>
in
;
for
(
int
i
=
0
;
i
<
ET
;
i
++
)
{
in
[
i
]
=
ins
[
i
]
->
data
<
InT
>
();
}
ElementVectorizeKernel
<
ET
,
VecSize
,
InT
,
OutT
,
Functor
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
in
,
out
,
numel
,
func
);
}
template
<
ElementwiseType
ET
,
typename
InT
,
typename
OutT
,
typename
Functor
>
...
...
@@ -190,43 +145,17 @@ void LaunchSameDimsElementwiseCudaKernel(
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
std
::
vector
<
framework
::
Tensor
*>
*
outs
,
Functor
func
)
{
// calculate the max vec_size for all ins and outs
auto
numel
=
ins
[
0
]
->
numel
();
int
vec_size
=
GetVectorizedSizeForIO
<
InT
,
OutT
>
(
ins
,
*
outs
);
int
block_size
=
GetThreadsConfig
(
ctx
,
numel
,
vec_size
);
int
grid_size
=
((
numel
+
vec_size
-
1
)
/
vec_size
+
block_size
-
1
)
/
block_size
;
int
main_tid
=
numel
/
vec_size
;
int
tail_tid
=
numel
%
vec_size
;
uint32_t
vec_len
=
main_tid
*
vec_size
;
// cuda kernel
auto
stream
=
ctx
.
stream
();
switch
(
vec_size
)
{
case
4
:
{
auto
data_wrapper
=
ElementwiseDataWrapper
<
ET
,
4
,
InT
,
OutT
>
(
ins
,
outs
,
vec_len
);
VectorizedKernel
<
ET
,
decltype
(
data_wrapper
),
InT
,
OutT
,
4
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
data_wrapper
,
main_tid
,
tail_tid
,
func
);
case
4
:
ElementwiseCudaKernel
<
ET
,
InT
,
OutT
,
Functor
,
4
>
(
ctx
,
ins
,
outs
,
func
);
break
;
}
case
2
:
{
auto
data_wrapper
=
ElementwiseDataWrapper
<
ET
,
2
,
InT
,
OutT
>
(
ins
,
outs
,
vec_len
);
VectorizedKernel
<
ET
,
decltype
(
data_wrapper
),
InT
,
OutT
,
2
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
data_wrapper
,
main_tid
,
tail_tid
,
func
);
case
2
:
ElementwiseCudaKernel
<
ET
,
InT
,
OutT
,
Functor
,
2
>
(
ctx
,
ins
,
outs
,
func
);
break
;
}
case
1
:
{
auto
data_wrapper
=
ElementwiseDataWrapper
<
ET
,
1
,
InT
,
OutT
>
(
ins
,
outs
,
0
);
ScalarKernel
<
ET
,
decltype
(
data_wrapper
),
InT
,
OutT
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
data_wrapper
,
numel
,
func
);
case
1
:
ElementwiseCudaKernel
<
ET
,
InT
,
OutT
,
Functor
,
1
>
(
ctx
,
ins
,
outs
,
func
);
break
;
}
default:
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unsupported vectorized size: %d !"
,
vec_size
));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录