Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e89bf25b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e89bf25b
编写于
2月 22, 2022
作者:
H
houj04
提交者:
GitHub
2月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update unittests for nearest_interp_v2_op_xpu: 'sync' from gpu. test=kunlun (#39768)
上级
574f3402
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
177 addition
and
50 deletion
+177
-50
paddle/fluid/operators/interpolate_v2_op.h
paddle/fluid/operators/interpolate_v2_op.h
+7
-0
paddle/fluid/operators/interpolate_v2_op_xpu.cc
paddle/fluid/operators/interpolate_v2_op_xpu.cc
+3
-15
python/paddle/fluid/tests/unittests/xpu/test_nearest_interp_v2_op_xpu.py
...luid/tests/unittests/xpu/test_nearest_interp_v2_op_xpu.py
+167
-35
未找到文件。
paddle/fluid/operators/interpolate_v2_op.h
浏览文件 @
e89bf25b
...
@@ -65,6 +65,13 @@ inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
...
@@ -65,6 +65,13 @@ inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
&
cpu_starts_tensor
);
&
cpu_starts_tensor
);
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
}
}
#endif
#ifdef PADDLE_WITH_XPU
if
(
platform
::
is_xpu_place
(
new_data_tensor
->
place
()))
{
paddle
::
framework
::
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
}
#endif
#endif
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
numel
());
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
numel
());
return
vec_new_data
;
return
vec_new_data
;
...
...
paddle/fluid/operators/interpolate_v2_op_xpu.cc
浏览文件 @
e89bf25b
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/interpolate_op.h"
#include "paddle/fluid/operators/interpolate_
v2_
op.h"
#ifdef PADDLE_WITH_XPU
#ifdef PADDLE_WITH_XPU
...
@@ -41,18 +41,6 @@ inline std::vector<int> get_new_shape_xpu(
...
@@ -41,18 +41,6 @@ inline std::vector<int> get_new_shape_xpu(
return
vec_new_shape
;
return
vec_new_shape
;
}
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor_xpu
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
framework
::
Tensor
cpu_starts_tensor
;
paddle
::
framework
::
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
auto
*
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
numel
());
return
vec_new_data
;
}
template
<
typename
T
>
template
<
typename
T
>
class
InterpolateV2XPUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
InterpolateV2XPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -90,7 +78,7 @@ class InterpolateV2XPUKernel : public framework::OpKernel<T> {
...
@@ -90,7 +78,7 @@ class InterpolateV2XPUKernel : public framework::OpKernel<T> {
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
if
(
scale_tensor
!=
nullptr
)
{
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
_xpu
<
float
>
(
scale_tensor
);
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
if
(
scale_data
.
size
()
>
1
)
{
if
(
scale_data
.
size
()
>
1
)
{
scale_h
=
scale_data
[
0
];
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
1
];
scale_w
=
scale_data
[
1
];
...
@@ -202,7 +190,7 @@ class InterpolateV2GradXPUKernel : public framework::OpKernel<T> {
...
@@ -202,7 +190,7 @@ class InterpolateV2GradXPUKernel : public framework::OpKernel<T> {
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
if
(
scale_tensor
!=
nullptr
)
{
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
_xpu
<
float
>
(
scale_tensor
);
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
if
(
scale_data
.
size
()
>
1
)
{
if
(
scale_data
.
size
()
>
1
)
{
scale_h
=
scale_data
[
0
];
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
1
];
scale_w
=
scale_data
[
1
];
...
...
python/paddle/fluid/tests/unittests/xpu/test_nearest_interp_v2_op_xpu.py
浏览文件 @
e89bf25b
...
@@ -81,7 +81,80 @@ def nearest_neighbor_interp_np(X,
...
@@ -81,7 +81,80 @@ def nearest_neighbor_interp_np(X,
if
data_layout
==
"NHWC"
:
if
data_layout
==
"NHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
# NCHW => NHWC
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
# NCHW => NHWC
# out = np.expand_dims(out, 2)
return
out
.
astype
(
X
.
dtype
)
def
nearest_neighbor_interp3d_np
(
X
,
out_d
,
out_h
,
out_w
,
scale_d
=
0
,
scale_h
=
0
,
scale_w
=
0
,
out_size
=
None
,
actual_shape
=
None
,
align_corners
=
True
,
data_layout
=
'NCHW'
):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if
data_layout
==
"NHWC"
:
X
=
np
.
transpose
(
X
,
(
0
,
4
,
1
,
2
,
3
))
# NDHWC => NCDHW
if
out_size
is
not
None
:
out_d
=
out_size
[
0
]
out_h
=
out_size
[
1
]
out_w
=
out_size
[
2
]
if
actual_shape
is
not
None
:
out_d
=
actual_shape
[
0
]
out_h
=
actual_shape
[
1
]
out_w
=
actual_shape
[
2
]
n
,
c
,
in_d
,
in_h
,
in_w
=
X
.
shape
ratio_d
=
ratio_h
=
ratio_w
=
0.0
if
(
out_d
>
1
):
if
(
align_corners
):
ratio_d
=
(
in_d
-
1.0
)
/
(
out_d
-
1.0
)
else
:
if
scale_d
>
0
:
ratio_d
=
1.0
/
scale_d
else
:
ratio_d
=
1.0
*
in_d
/
out_d
if
(
out_h
>
1
):
if
(
align_corners
):
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
else
:
if
scale_h
>
0
:
ratio_h
=
1.0
/
scale_h
else
:
ratio_h
=
1.0
*
in_h
/
out_h
if
(
out_w
>
1
):
if
(
align_corners
):
ratio_w
=
(
in_w
-
1.0
)
/
(
out_w
-
1.0
)
else
:
if
scale_w
>
0
:
ratio_w
=
1.0
/
scale_w
else
:
ratio_w
=
1.0
*
in_w
/
out_w
out
=
np
.
zeros
((
n
,
c
,
out_d
,
out_h
,
out_w
))
if
align_corners
:
for
d
in
range
(
out_d
):
in_d
=
int
(
ratio_d
*
d
+
0.5
)
for
i
in
range
(
out_h
):
in_i
=
int
(
ratio_h
*
i
+
0.5
)
for
j
in
range
(
out_w
):
in_j
=
int
(
ratio_w
*
j
+
0.5
)
out
[:,
:,
d
,
i
,
j
]
=
X
[:,
:,
in_d
,
in_i
,
in_j
]
else
:
for
d
in
range
(
out_d
):
in_d
=
int
(
ratio_d
*
d
)
for
i
in
range
(
out_h
):
in_i
=
int
(
ratio_h
*
i
)
for
j
in
range
(
out_w
):
in_j
=
int
(
ratio_w
*
j
)
out
[:,
:,
d
,
i
,
j
]
=
X
[:,
:,
in_d
,
in_i
,
in_j
]
if
data_layout
==
"NDHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
4
,
1
))
# NCDHW => NDHWC
return
out
.
astype
(
X
.
dtype
)
return
out
.
astype
(
X
.
dtype
)
...
@@ -90,46 +163,86 @@ class TestNearestInterpOp(XPUOpTest):
...
@@ -90,46 +163,86 @@ class TestNearestInterpOp(XPUOpTest):
self
.
use_xpu
=
True
self
.
use_xpu
=
True
self
.
out_size
=
None
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
actual_shape
=
None
self
.
data_layout
=
'NCHW'
self
.
init_test_case
()
self
.
init_test_case
()
self
.
op_type
=
"nearest_interp_v2"
self
.
op_type
=
"nearest_interp_v2"
self
.
shape_by_1Dtensor
=
False
self
.
scale_by_1Dtensor
=
False
self
.
attrs
=
{
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
}
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
scale_by_1Dtensor
:
if
self
.
data_layout
==
"NCHW"
and
len
(
self
.
input_shape
)
==
4
:
self
.
inputs
[
'Scale'
]
=
np
.
array
([
self
.
scale
]).
astype
(
"float32"
)
in_d
=
1
elif
self
.
scale
:
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
else
:
in_d
=
1
in_h
=
self
.
input_shape
[
1
]
in_w
=
self
.
input_shape
[
2
]
if
self
.
data_layout
==
"NCDHW"
and
len
(
self
.
input_shape
)
==
5
:
in_d
=
self
.
input_shape
[
2
]
in_h
=
self
.
input_shape
[
3
]
in_w
=
self
.
input_shape
[
4
]
else
:
in_d
=
self
.
input_shape
[
1
]
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
scale_d
=
0
scale_h
=
0
scale_w
=
0
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
if
self
.
scale
>
0
:
scale_h
=
scale_w
=
float
(
self
.
scale
)
scale_
d
=
scale_
h
=
scale_w
=
float
(
self
.
scale
)
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
scale_w
=
scale_h
=
self
.
scale
[
0
]
scale_
d
=
scale_
w
=
scale_h
=
self
.
scale
[
0
]
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
scale_w
=
self
.
scale
[
1
]
if
len
(
self
.
scale
)
==
5
:
scale_h
=
self
.
scale
[
0
]
scale_w
=
self
.
scale
[
2
]
out_h
=
int
(
self
.
input_shape
[
2
]
*
scale_h
)
scale_h
=
self
.
scale
[
1
]
out_w
=
int
(
self
.
input_shape
[
3
]
*
scale_w
)
scale_d
=
self
.
scale
[
0
]
else
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
out_h
=
int
(
in_h
*
scale_h
)
out_w
=
int
(
in_w
*
scale_w
)
out_d
=
int
(
in_d
*
scale_d
)
else
:
else
:
if
len
(
self
.
input_shape
)
==
5
:
out_d
=
self
.
out_d
out_h
=
self
.
out_h
out_h
=
self
.
out_h
out_w
=
self
.
out_w
out_w
=
self
.
out_w
if
self
.
shape_by_1Dtensor
:
if
len
(
self
.
input_shape
)
==
4
:
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
scale_h
,
scale_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
data_layout
)
elif
len
(
self
.
input_shape
)
==
5
:
output_np
=
nearest_neighbor_interp3d_np
(
input_np
,
out_d
,
out_h
,
out_w
,
scale_d
,
scale_h
,
scale_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
data_layout
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
elif
self
.
out_size
is
not
None
:
if
self
.
actual_shape
is
not
None
:
size_tensor
=
[]
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
for
index
,
ele
in
enumerate
(
self
.
out_size
):
if
len
(
self
.
input_shape
)
==
5
:
size_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
self
.
attrs
=
{
(
1
)).
astype
(
'int32'
)
*
ele
))
'out_d'
:
self
.
out_d
,
self
.
inputs
[
'SizeTensor'
]
=
size_tensor
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
self
.
attrs
[
'out_h'
]
=
self
.
out_h
'interp_method'
:
self
.
interp_method
,
self
.
attrs
[
'out_w'
]
=
self
.
out_w
'align_corners'
:
self
.
align_corners
,
'data_layout'
:
self
.
data_layout
}
else
:
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'data_layout'
:
self
.
data_layout
}
if
self
.
scale
:
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
if
self
.
scale
>
0
:
...
@@ -137,9 +250,6 @@ class TestNearestInterpOp(XPUOpTest):
...
@@ -137,9 +250,6 @@ class TestNearestInterpOp(XPUOpTest):
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
self
.
scale
=
[
self
.
scale
[
0
],
self
.
scale
[
0
]]
self
.
scale
=
[
self
.
scale
[
0
],
self
.
scale
[
0
]]
self
.
attrs
[
'scale'
]
=
self
.
scale
self
.
attrs
[
'scale'
]
=
self
.
scale
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
0
,
0
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
)
self
.
outputs
=
{
'Out'
:
output_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
...
@@ -154,22 +264,26 @@ class TestNearestInterpOp(XPUOpTest):
...
@@ -154,22 +264,26 @@ class TestNearestInterpOp(XPUOpTest):
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
5
,
4
,
4
]
self
.
input_shape
=
[
2
,
3
,
4
,
5
]
self
.
out_h
=
3
self
.
out_h
=
2
self
.
out_w
=
3
self
.
out_w
=
2
self
.
scale
=
0.
self
.
scale
=
0.
self
.
out_size
=
[
3
,
3
]
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
"""
# case copied form gpu but disabled in xpu: not support 5-dim input_shape
class TestNearestNeighborInterpCase1(TestNearestInterpOp):
class TestNearestNeighborInterpCase1(TestNearestInterpOp):
def init_test_case(self):
def init_test_case(self):
self.interp_method = 'nearest'
self.interp_method = 'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self.input_shape = [4, 1, 1, 7, 8]
self.out_d = 1
self.out_h = 1
self.out_h = 1
self.out_w = 1
self.out_w = 1
self.scale = 0.
self.scale = 0.
self.align_corners = True
self.align_corners = True
"""
class
TestNearestNeighborInterpCase2
(
TestNearestInterpOp
):
class
TestNearestNeighborInterpCase2
(
TestNearestInterpOp
):
...
@@ -246,6 +360,8 @@ class TestNearestNeighborInterpActualShape(TestNearestInterpOp):
...
@@ -246,6 +360,8 @@ class TestNearestNeighborInterpActualShape(TestNearestInterpOp):
self
.
align_corners
=
True
self
.
align_corners
=
True
"""
# case copied form gpu but disabled in xpu: not support NHWC data_layout
class TestNearestNeighborInterpDataLayout(TestNearestInterpOp):
class TestNearestNeighborInterpDataLayout(TestNearestInterpOp):
def init_test_case(self):
def init_test_case(self):
self.interp_method = 'nearest'
self.interp_method = 'nearest'
...
@@ -256,6 +372,7 @@ class TestNearestNeighborInterpDataLayout(TestNearestInterpOp):
...
@@ -256,6 +372,7 @@ class TestNearestNeighborInterpDataLayout(TestNearestInterpOp):
self.out_size = np.array([3, 8]).astype("int32")
self.out_size = np.array([3, 8]).astype("int32")
self.align_corners = True
self.align_corners = True
self.data_layout = "NHWC"
self.data_layout = "NHWC"
"""
class
TestNearestInterpWithoutCorners
(
TestNearestInterpOp
):
class
TestNearestInterpWithoutCorners
(
TestNearestInterpOp
):
...
@@ -296,6 +413,21 @@ class TestNearestNeighborInterpScale3(TestNearestInterpOp):
...
@@ -296,6 +413,21 @@ class TestNearestNeighborInterpScale3(TestNearestInterpOp):
self
.
align_corners
=
True
self
.
align_corners
=
True
"""
# case copied form gpu but disabled in xpu: not support 5-dim input_shape
class TestNearestNeighbor3DInterp(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 4, 7, 5]
self.out_d = 8
self.out_h = 64
self.out_w = 32
self.scale = [4.0, 2.0, 3.0]
self.out_size = np.array([8, 66, 40]).astype("int32")
self.align_corners = True
"""
class
TestNearestInterpOp_attr_tensor
(
XPUOpTest
):
class
TestNearestInterpOp_attr_tensor
(
XPUOpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
use_xpu
=
True
self
.
use_xpu
=
True
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录