提交 e7fa61e2 编写于 作者: P peizhilin

fix unit test cases

test=develop
上级 a7fc3d42
...@@ -231,14 +231,17 @@ def infer(use_cuda, inference_program, params_dirname): ...@@ -231,14 +231,17 @@ def infer(use_cuda, inference_program, params_dirname):
# Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
# level of detail info, indicating that `data` consists of two sequences # level of detail info, indicating that `data` consists of two sequences
# of length 3 and 2, respectively. # of length 3 and 2, respectively.
user_id = fluid.create_lod_tensor([[1]], [[1]], place) user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
gender_id = fluid.create_lod_tensor([[1]], [[1]], place) gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
age_id = fluid.create_lod_tensor([[0]], [[1]], place) age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
job_id = fluid.create_lod_tensor([[10]], [[1]], place) job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
movie_id = fluid.create_lod_tensor([[783]], [[1]], place) movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place) category_id = fluid.create_lod_tensor(
movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]], [[5]], [np.array(
place) [10, 8, 9], dtype='int64')], [[3]], place)
movie_title = fluid.create_lod_tensor(
[np.array(
[1069, 4140, 2923, 710, 988], dtype='int64')], [[5]], place)
results = inferencer.infer( results = inferencer.infer(
{ {
......
...@@ -271,26 +271,30 @@ def infer(use_cuda, save_dirname=None): ...@@ -271,26 +271,30 @@ def infer(use_cuda, save_dirname=None):
# Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
# level of detail info, indicating that `data` consists of two sequences # level of detail info, indicating that `data` consists of two sequences
# of length 3 and 2, respectively. # of length 3 and 2, respectively.
user_id = fluid.create_lod_tensor([[1]], [[1]], place) user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
assert feed_target_names[1] == "gender_id" assert feed_target_names[1] == "gender_id"
gender_id = fluid.create_lod_tensor([[1]], [[1]], place) gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
assert feed_target_names[2] == "age_id" assert feed_target_names[2] == "age_id"
age_id = fluid.create_lod_tensor([[0]], [[1]], place) age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
assert feed_target_names[3] == "job_id" assert feed_target_names[3] == "job_id"
job_id = fluid.create_lod_tensor([[10]], [[1]], place) job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
assert feed_target_names[4] == "movie_id" assert feed_target_names[4] == "movie_id"
movie_id = fluid.create_lod_tensor([[783]], [[1]], place) movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
assert feed_target_names[5] == "category_id" assert feed_target_names[5] == "category_id"
category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place) category_id = fluid.create_lod_tensor(
[np.array(
[10, 8, 9], dtype='int64')], [[3]], place)
assert feed_target_names[6] == "movie_title" assert feed_target_names[6] == "movie_title"
movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]], movie_title = fluid.create_lod_tensor(
[[5]], place) [np.array(
[1069, 4140, 2923, 710, 988], dtype='int64')], [[5]],
place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data} # Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets. # and results will contain a list of data corresponding to fetch_targets.
......
...@@ -24,7 +24,7 @@ class TestAucOp(OpTest): ...@@ -24,7 +24,7 @@ class TestAucOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "auc" self.op_type = "auc"
pred = np.random.random((128, 2)).astype("float32") pred = np.random.random((128, 2)).astype("float32")
labels = np.random.randint(0, 2, (128, 1)) labels = np.random.randint(0, 2, (128, 1)).astype("int64")
num_thresholds = 200 num_thresholds = 200
stat_pos = np.zeros((num_thresholds + 1, )).astype("int64") stat_pos = np.zeros((num_thresholds + 1, )).astype("int64")
......
...@@ -68,7 +68,8 @@ class TestNCE(OpTest): ...@@ -68,7 +68,8 @@ class TestNCE(OpTest):
weight = np.random.randn(num_classes, dim).astype(np.float32) weight = np.random.randn(num_classes, dim).astype(np.float32)
bias = np.random.randn(num_classes).astype(np.float32) bias = np.random.randn(num_classes).astype(np.float32)
sample_weight = np.random.randn(batch_size).astype(np.float32) sample_weight = np.random.randn(batch_size).astype(np.float32)
labels = np.random.randint(0, num_classes, (batch_size, num_true_class)) labels = np.random.randint(0, num_classes,
(batch_size, num_true_class)).astype("int64")
self.attrs = { self.attrs = {
'num_total_classes': num_classes, 'num_total_classes': num_classes,
'num_neg_samples': num_neg_samples, 'num_neg_samples': num_neg_samples,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册