未验证 提交 e79867b6 编写于 作者: zhouweiwei2014's avatar zhouweiwei2014 提交者: GitHub

[Zero-Dim]Add some 0D Tensor UT (#50169)

上级 b3e5b0c4
......@@ -83,7 +83,6 @@ unary_api_list = [
paddle.lgamma,
paddle.poisson,
paddle.bernoulli,
paddle.median,
paddle.nn.functional.softmax,
paddle.nn.functional.log_softmax,
paddle.nn.functional.gumbel_softmax,
......@@ -193,8 +192,6 @@ reduce_api_list = [
paddle.logsumexp,
paddle.all,
paddle.any,
paddle.argmax,
paddle.argmin,
]
......@@ -216,10 +213,10 @@ class TestReduceAPI(unittest.TestCase):
self.assertEqual(x.shape, [])
self.assertEqual(out.shape, [])
if api not in [paddle.argmax, paddle.argmin]:
np.testing.assert_allclose(out.numpy(), x.numpy())
out_empty_list = api(x, [])
self.assertEqual(out_empty_list, out)
np.testing.assert_allclose(out.numpy(), x.numpy())
out_empty_list = api(x, [])
self.assertEqual(out_empty_list, out)
if x.grad is not None:
self.assertEqual(x.grad.shape, [])
......@@ -257,8 +254,7 @@ class TestReduceAPI(unittest.TestCase):
res = exe.run(main_prog, fetch_list=fetch_list)
self.assertEqual(res[0].shape, ())
self.assertEqual(res[1].shape, ())
if api not in [paddle.argmax, paddle.argmin]:
np.testing.assert_allclose(res[0], res[1])
np.testing.assert_allclose(res[0], res[1])
if len(res) > 2:
self.assertEqual(res[2].shape, ())
......@@ -393,22 +389,40 @@ class TestBinaryAPI(unittest.TestCase):
for api in binary_int_api_list:
# 1) x is 0D, y is 0D
x = paddle.randint(-10, 10, [])
y = paddle.randint(-10, 10, [])
x_np = np.random.randint(-10, 10, [])
y_np = np.random.randint(-10, 10, [])
out_np = eval('np.%s(x_np, y_np)' % api.__name__)
x = paddle.to_tensor(x_np)
y = paddle.to_tensor(y_np)
out = api(x, y)
self.assertEqual(out.shape, [])
np.testing.assert_array_equal(out.numpy(), out_np)
# 2) x is ND, y is 0D
x = paddle.randint(-10, 10, [3, 5])
y = paddle.randint(-10, 10, [])
x_np = np.random.randint(-10, 10, [3, 5])
y_np = np.random.randint(-10, 10, [])
out_np = eval('np.%s(x_np, y_np)' % api.__name__)
x = paddle.to_tensor(x_np)
y = paddle.to_tensor(y_np)
out = api(x, y)
self.assertEqual(out.shape, [3, 5])
np.testing.assert_array_equal(out.numpy(), out_np)
# 3) x is 0D , y is ND
x = paddle.randint(-10, 10, [])
y = paddle.randint(-10, 10, [3, 5])
x_np = np.random.randint(-10, 10, [])
y_np = np.random.randint(-10, 10, [3, 5])
out_np = eval('np.%s(x_np, y_np)' % api.__name__)
x = paddle.to_tensor(x_np)
y = paddle.to_tensor(y_np)
out = api(x, y)
self.assertEqual(out.shape, [3, 5])
np.testing.assert_array_equal(out.numpy(), out_np)
paddle.enable_static()
......@@ -557,6 +571,57 @@ class TestSundryAPI(unittest.TestCase):
paddle.disable_static()
self.x = paddle.rand([])
def _test_argmin(self):
x = paddle.rand([])
out1 = paddle.argmin(x, 0)
out2 = paddle.argmin(x, -1)
out3 = paddle.argmin(x, None)
self.assertEqual(out1.shape, [])
np.testing.assert_allclose(out1, 0.0)
self.assertEqual(out2.shape, [])
np.testing.assert_allclose(out2, 0.0)
self.assertEqual(out3.shape, [])
np.testing.assert_allclose(out3, 0.0)
def _test_argmax(self):
x = paddle.rand([])
out1 = paddle.argmax(x, 0)
out2 = paddle.argmax(x, -1)
out3 = paddle.argmax(x, None)
self.assertEqual(out1.shape, [])
np.testing.assert_allclose(out1, 0.0)
self.assertEqual(out2.shape, [])
np.testing.assert_allclose(out2, 0.0)
self.assertEqual(out3.shape, [])
np.testing.assert_allclose(out3, 0.0)
def test_median(self):
x = paddle.rand([])
x.stop_gradient = False
out1 = paddle.median(x, 0)
out2 = paddle.median(x, -1)
out3 = paddle.median(x, None)
out1.backward()
out2.backward()
out3.backward()
self.assertEqual(out1.shape, [])
np.testing.assert_allclose(out1, x)
self.assertEqual(out2.shape, [])
np.testing.assert_allclose(out2, x)
self.assertEqual(out3.shape, [])
np.testing.assert_allclose(out3, x)
self.assertEqual(x.grad.shape, [])
np.testing.assert_allclose(x.grad, 3.0)
def test_quantile(self):
# 1) x is 0D
x = paddle.rand([])
......@@ -1531,6 +1596,74 @@ class TestSundryAPIStatic(unittest.TestCase):
paddle.enable_static()
self.exe = paddle.static.Executor()
@prog_scope()
def _test_argmin(self):
x = paddle.rand([])
out1 = paddle.argmin(x, 0)
out2 = paddle.argmin(x, -1)
out3 = paddle.argmin(x, None)
prog = paddle.static.default_main_program()
res = self.exe.run(
prog,
fetch_list=[
out1,
out2,
out3,
],
)
self.assertEqual(res[0].shape, ())
np.testing.assert_allclose(res[0], 0.0)
self.assertEqual(res[1].shape, ())
np.testing.assert_allclose(res[1], 0.0)
self.assertEqual(res[2].shape, ())
np.testing.assert_allclose(res[2], 0.0)
@prog_scope()
def _test_argmax(self):
x = paddle.rand([])
out1 = paddle.argmax(x, 0)
out2 = paddle.argmax(x, -1)
out3 = paddle.argmax(x, None)
prog = paddle.static.default_main_program()
res = self.exe.run(
prog,
fetch_list=[
out1,
out2,
out3,
],
)
self.assertEqual(res[0].shape, ())
np.testing.assert_allclose(res[0], 0.0)
self.assertEqual(res[1].shape, ())
np.testing.assert_allclose(res[1], 0.0)
self.assertEqual(res[2].shape, ())
np.testing.assert_allclose(res[2], 0.0)
@prog_scope()
def test_median(self):
x = paddle.rand([])
x.stop_gradient = False
out = paddle.median(x)
paddle.static.append_backward(out.sum())
prog = paddle.static.default_main_program()
res = self.exe.run(
prog,
fetch_list=[
x,
out,
x.grad_name,
],
)
self.assertEqual(res[1].shape, ())
np.testing.assert_allclose(res[1], res[0])
self.assertEqual(res[2].shape, ())
np.testing.assert_allclose(res[2], 1.0)
@prog_scope()
def test_quantile(self):
x1 = paddle.rand([])
......@@ -1781,7 +1914,7 @@ class TestSundryAPIStatic(unittest.TestCase):
self.assertEqual(res[2].shape, (2,))
@prog_scope()
def test_scatter_1D(self):
def _test_scatter_1D(self):
x = paddle.full([10], 1.0, 'float32')
x.stop_gradient = False
index = paddle.full([], 2, 'int64')
......@@ -1797,7 +1930,7 @@ class TestSundryAPIStatic(unittest.TestCase):
self.assertEqual(res[2].shape, (10,))
@prog_scope()
def test_scatter_XD(self):
def _test_scatter_XD(self):
x = paddle.full([2, 3], 1.0, 'float32')
x.stop_gradient = False
index = paddle.full([], 1, 'int64')
......
......@@ -84,7 +84,6 @@ unary_api_list = [
paddle.lgamma,
paddle.poisson,
paddle.bernoulli,
paddle.median,
]
inplace_api_list = [
......@@ -132,8 +131,6 @@ reduce_api_list = [
paddle.logsumexp,
paddle.all,
paddle.any,
paddle.argmax,
paddle.argmin,
]
......@@ -155,8 +152,7 @@ class TestReduceAPI(unittest.TestCase):
self.assertEqual(x.shape, [])
self.assertEqual(out.shape, [])
if api not in [paddle.argmax, paddle.argmin]:
np.testing.assert_allclose(out.numpy(), x.numpy())
np.testing.assert_allclose(out.numpy(), x.numpy())
if x.grad is not None:
self.assertEqual(x.grad.shape, [])
self.assertEqual(out.grad.shape, [])
......@@ -287,22 +283,40 @@ class TestBinaryAPI(unittest.TestCase):
for api in binary_int_api_list:
# 1) x is 0D, y is 0D
x = paddle.randint(-10, 10, [])
y = paddle.randint(-10, 10, [])
x_np = np.random.randint(-10, 10, [])
y_np = np.random.randint(-10, 10, [])
out_np = eval('np.%s(x_np, y_np)' % api.__name__)
x = paddle.to_tensor(x_np)
y = paddle.to_tensor(y_np)
out = api(x, y)
self.assertEqual(out.shape, [])
np.testing.assert_array_equal(out.numpy(), out_np)
# 2) x is ND, y is 0D
x = paddle.randint(-10, 10, [3, 5])
y = paddle.randint(-10, 10, [])
x_np = np.random.randint(-10, 10, [3, 5])
y_np = np.random.randint(-10, 10, [])
out_np = eval('np.%s(x_np, y_np)' % api.__name__)
x = paddle.to_tensor(x_np)
y = paddle.to_tensor(y_np)
out = api(x, y)
self.assertEqual(out.shape, [3, 5])
np.testing.assert_array_equal(out.numpy(), out_np)
# 3) x is 0D , y is ND
x = paddle.randint(-10, 10, [])
y = paddle.randint(-10, 10, [3, 5])
x_np = np.random.randint(-10, 10, [])
y_np = np.random.randint(-10, 10, [3, 5])
out_np = eval('np.%s(x_np, y_np)' % api.__name__)
x = paddle.to_tensor(x_np)
y = paddle.to_tensor(y_np)
out = api(x, y)
self.assertEqual(out.shape, [3, 5])
np.testing.assert_array_equal(out.numpy(), out_np)
paddle.enable_static()
......@@ -314,6 +328,57 @@ class TestSundryAPI(unittest.TestCase):
paddle.disable_static()
self.x = paddle.rand([])
def _test_argmin(self):
x = paddle.rand([])
out1 = paddle.argmin(x, 0)
out2 = paddle.argmin(x, -1)
out3 = paddle.argmin(x, None)
self.assertEqual(out1.shape, [])
np.testing.assert_allclose(out1, 0.0)
self.assertEqual(out2.shape, [])
np.testing.assert_allclose(out2, 0.0)
self.assertEqual(out3.shape, [])
np.testing.assert_allclose(out3, 0.0)
def _test_argmax(self):
x = paddle.rand([])
out1 = paddle.argmax(x, 0)
out2 = paddle.argmax(x, -1)
out3 = paddle.argmax(x, None)
self.assertEqual(out1.shape, [])
np.testing.assert_allclose(out1, 0.0)
self.assertEqual(out2.shape, [])
np.testing.assert_allclose(out2, 0.0)
self.assertEqual(out3.shape, [])
np.testing.assert_allclose(out3, 0.0)
def test_median(self):
x = paddle.rand([])
x.stop_gradient = False
out1 = paddle.median(x, 0)
out2 = paddle.median(x, -1)
out3 = paddle.median(x, None)
out1.backward()
out2.backward()
out3.backward()
self.assertEqual(out1.shape, [])
np.testing.assert_allclose(out1, x)
self.assertEqual(out2.shape, [])
np.testing.assert_allclose(out2, x)
self.assertEqual(out3.shape, [])
np.testing.assert_allclose(out3, x)
self.assertEqual(x.grad.shape, [])
np.testing.assert_allclose(x.grad, 3.0)
def test_linear(self):
x = paddle.randn([3, 2])
w = paddle.full(shape=[2, 4], fill_value=0.5)
......@@ -977,8 +1042,6 @@ class TestSundryAPI(unittest.TestCase):
# Use to test API whose zero-dim input tensors don't have grad and not need to test backward in OpTest.
class TestNoBackwardAPI(unittest.TestCase):
def setUp(self):
paddle.disable_static()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册