未验证 提交 e677b5e5 编写于 作者: H hjyp 提交者: GitHub

修复paddle.nn.functinal包和paddle.nn包下API文档 (#48581)

上级 ad41fce8
...@@ -614,10 +614,10 @@ def conv2d( ...@@ -614,10 +614,10 @@ def conv2d(
the number of output channels, g is the number of groups, kH is the filter's the number of output channels, g is the number of groups, kH is the filter's
height, kW is the filter's width. height, kW is the filter's width.
bias (Tensor, optional): The bias with shape [M,]. bias (Tensor, optional): The bias with shape [M,].
stride (int|list|tuple): The stride size. It means the stride in convolution. stride (int|list|tuple, optional): The stride size. It means the stride in convolution.
If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
Otherwise, stride_height = stride_width = stride. Default: stride = 1. Otherwise, stride_height = stride_width = stride. Default: stride = 1.
padding (string|int|list|tuple): The padding size. It means the number of zero-paddings padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
on both sides for each dimension.If `padding` is a string, either 'VALID' or on both sides for each dimension.If `padding` is a string, either 'VALID' or
'SAME' which is the padding algorithm. If padding size is a tuple or list, 'SAME' which is the padding algorithm. If padding size is a tuple or list,
it could be in three forms: `[pad_height, pad_width]` or it could be in three forms: `[pad_height, pad_width]` or
...@@ -627,11 +627,11 @@ def conv2d( ...@@ -627,11 +627,11 @@ def conv2d(
when `data_format` is `"NHWC"`, `padding` can be in the form when `data_format` is `"NHWC"`, `padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0. Default: padding = 0.
dilation (int|list|tuple): The dilation size. It means the spacing between the kernel dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel
points. If dilation is a list/tuple, it must contain two integers, (dilation_height, points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
dilation_width). Otherwise, dilation_height = dilation_width = dilation. dilation_width). Otherwise, dilation_height = dilation_width = dilation.
Default: dilation = 1. Default: dilation = 1.
groups (int): The groups number of the Conv2D Layer. According to grouped groups (int, optional): The groups number of the Conv2D Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2, convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only of the input channels, while the second half of the filters is only
......
...@@ -449,7 +449,7 @@ class Conv1DTranspose(_ConvNd): ...@@ -449,7 +449,7 @@ class Conv1DTranspose(_ConvNd):
in_channels(int): The number of channels in the input image. in_channels(int): The number of channels in the input image.
out_channels(int): The number of the filter. It is as same as the output out_channels(int): The number of the filter. It is as same as the output
feature map. feature map.
kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list, kernel_size(int|tuple|list): The filter size. If kernel_size is a tuple/list,
it must contain one integers, (kernel_size). None if it must contain one integers, (kernel_size). None if
use output size to calculate kernel_size. Default: None. kernel_size and use output size to calculate kernel_size. Default: None. kernel_size and
output_size should not be None at the same time. output_size should not be None at the same time.
...@@ -598,7 +598,7 @@ class Conv2D(_ConvNd): ...@@ -598,7 +598,7 @@ class Conv2D(_ConvNd):
Parameters: Parameters:
in_channels(int): The number of input channels in the input image. in_channels(int): The number of input channels in the input image.
out_channels(int): The number of output channels produced by the convolution. out_channels(int): The number of output channels produced by the convolution.
kernel_size(int|list|tuple, optional): The size of the convolving kernel. kernel_size(int|list|tuple): The size of the convolving kernel.
stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
contain three integers, (stride_H, stride_W). Otherwise, the contain three integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. The default value is 1. stride_H = stride_W = stride. The default value is 1.
...@@ -925,7 +925,7 @@ class Conv3D(_ConvNd): ...@@ -925,7 +925,7 @@ class Conv3D(_ConvNd):
Parameters: Parameters:
in_channels(int): The number of input channels in the input image. in_channels(int): The number of input channels in the input image.
out_channels(int): The number of output channels produced by the convolution. out_channels(int): The number of output channels produced by the convolution.
kernel_size(int|list|tuple, optional): The size of the convolving kernel. kernel_size(int|list|tuple): The size of the convolving kernel.
stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
contain three integers, (stride_D, stride_H, stride_W). Otherwise, the contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. The default value is 1. stride_D = stride_H = stride_W = stride. The default value is 1.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册