Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ad41fce8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ad41fce8
编写于
12月 07, 2022
作者:
S
Sławomir Siwek
提交者:
GitHub
12月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PHI] Migrate squeeze and squeeze_grad kernels (#48634)
* squeeze kernel * squeze fwd * whitespace
上级
4aad4dc5
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
147 addition
and
36 deletion
+147
-36
paddle/fluid/operators/mkldnn/reshape_mkldnn_op.cc
paddle/fluid/operators/mkldnn/reshape_mkldnn_op.cc
+3
-36
paddle/phi/kernels/onednn/squeeze_grad_kernel.cc
paddle/phi/kernels/onednn/squeeze_grad_kernel.cc
+59
-0
paddle/phi/kernels/onednn/squeeze_kernel.cc
paddle/phi/kernels/onednn/squeeze_kernel.cc
+85
-0
未找到文件。
paddle/fluid/operators/mkldnn/reshape_mkldnn_op.cc
浏览文件 @
ad41fce8
...
...
@@ -21,7 +21,6 @@ enum class ReshapeKernelOpName {
reshape
,
reshape2
,
squeeze
,
squeeze2
,
flatten
,
flatten2
,
};
...
...
@@ -106,9 +105,6 @@ class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
case
ReshapeKernelOpName
::
squeeze
:
InferShapeSqueezeOp
(
ctx
,
x_dims
,
out_dims
);
break
;
case
ReshapeKernelOpName
::
squeeze2
:
InferShapeSqueeze2Op
(
ctx
,
x_dims
,
out_dims
);
break
;
case
ReshapeKernelOpName
::
flatten
:
InferShapeFlattenOp
(
ctx
,
x_dims
,
out_dims
);
break
;
...
...
@@ -172,16 +168,6 @@ class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
out_dims
=
GetOutputShape
(
axes
,
x_dims
,
true
);
}
void
InferShapeSqueeze2Op
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
DDim
&
x_dims
,
// NOLINT
framework
::
DDim
&
out_dims
)
const
{
// NOLINT
auto
*
out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
auto
*
xshape
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"XShape"
);
auto
xshape_dims
=
xshape
->
dims
();
x_dims
=
phi
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
out_dims
=
out
->
dims
();
}
void
InferShapeFlattenOp
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
DDim
&
x_dims
,
// NOLINT
framework
::
DDim
&
out_dims
)
const
{
// NOLINT
...
...
@@ -342,19 +328,16 @@ class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
InferShapeReshapeSqueezeGradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
reshape2
:
InferShapeReshape2
Squeeze2
Flatten2GradOp
(
ctx
,
x_dims
);
InferShapeReshape2Flatten2GradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
squeeze
:
InferShapeReshapeSqueezeGradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
squeeze2
:
InferShapeReshape2Squeeze2Flatten2GradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
flatten
:
InferShapeFlattenGradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
flatten2
:
InferShapeReshape2
Squeeze2
Flatten2GradOp
(
ctx
,
x_dims
);
InferShapeReshape2Flatten2GradOp
(
ctx
,
x_dims
);
break
;
default:
PADDLE_THROW
(
paddle
::
platform
::
errors
::
OutOfRange
(
...
...
@@ -369,7 +352,7 @@ class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
dx_dims
=
dx
->
dims
();
}
void
InferShapeReshape2
Squeeze2
Flatten2GradOp
(
void
InferShapeReshape2Flatten2GradOp
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
DDim
&
dx_dims
)
const
{
// NOLINT
auto
xshape_dims
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"XShape"
)
->
dims
();
...
...
@@ -401,22 +384,6 @@ REGISTER_OP_KERNEL(
ops
::
ReshapeGradMKLDNNKernel
<
paddle
::
platform
::
bfloat16
,
ReshapeKernelOpName
::
squeeze
>
);
REGISTER_OP_KERNEL
(
squeeze2
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
ReshapeMKLDNNKernel
<
float
,
ReshapeKernelOpName
::
squeeze2
>
,
ops
::
ReshapeMKLDNNKernel
<
paddle
::
platform
::
bfloat16
,
ReshapeKernelOpName
::
squeeze2
>
);
REGISTER_OP_KERNEL
(
squeeze2_grad
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
ReshapeGradMKLDNNKernel
<
float
,
ReshapeKernelOpName
::
squeeze2
>
,
ops
::
ReshapeGradMKLDNNKernel
<
paddle
::
platform
::
bfloat16
,
ReshapeKernelOpName
::
squeeze2
>
);
REGISTER_OP_KERNEL
(
reshape
,
MKLDNN
,
...
...
paddle/phi/kernels/onednn/squeeze_grad_kernel.cc
0 → 100644
浏览文件 @
ad41fce8
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/squeeze_grad_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SqueezeGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
xshape
,
const
DenseTensor
&
dout
,
const
IntArray
&
axes
,
DenseTensor
*
dx
)
{
auto
dout_vec_dims
=
vectorize
(
dout
.
dims
());
auto
dout_type
=
funcs
::
ToOneDNNDataType
(
dout
.
dtype
());
funcs
::
ReorderOneDNNHandler
reorder_handler
(
dout_vec_dims
,
dout
.
dtype
(),
dout_type
,
dev_ctx
.
GetEngine
());
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
dout
.
mem_desc
(),
funcs
::
to_void_cast
(
dout
.
data
<
T
>
()));
auto
reorder_dst_memory_p
=
reorder_handler
.
AcquireDstMemory
(
dx
,
funcs
::
GetPlainOneDNNFormat
(
dout_vec_dims
.
size
()),
dev_ctx
.
GetPlace
());
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_dst_memory_p
,
reorder_src_memory_p
);
auto
&
astream
=
OneDNNContext
::
tls
().
get_stream
();
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
auto
dx_dims
=
slice_ddim
(
xshape
.
dims
(),
1
,
xshape
.
dims
().
size
());
dx
->
Resize
(
dx_dims
);
reorder_dst_memory_p
->
get_desc
().
reshape
(
vectorize
(
dx_dims
));
}
}
// namespace phi
PD_REGISTER_KERNEL
(
squeeze_grad
,
OneDNN
,
ONEDNN
,
phi
::
SqueezeGradKernel
,
float
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/onednn/squeeze_kernel.cc
0 → 100644
浏览文件 @
ad41fce8
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/squeeze_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ExecuteSqueeze
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DDim
&
x_dims
,
const
DDim
&
out_dims
,
DenseTensor
*
out
)
{
auto
x_vec_dims
=
vectorize
(
x_dims
);
funcs
::
ReorderOneDNNHandler
reorder_handler
(
x_vec_dims
,
x
.
dtype
(),
funcs
::
ToOneDNNDataType
(
x
.
dtype
()),
dev_ctx
.
GetEngine
());
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
x
.
mem_desc
(),
funcs
::
to_void_cast
(
x
.
data
<
T
>
()));
out
->
Resize
(
x_dims
);
// to match x numel, format is changed later
// reorder is done into a plain tag to allow usage with blocked formats
auto
reorder_dst_memory_p
=
reorder_handler
.
AcquireDstMemory
(
out
,
funcs
::
GetPlainOneDNNFormat
(
x_dims
.
size
()),
dev_ctx
.
GetPlace
());
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_dst_memory_p
,
reorder_src_memory_p
);
auto
&
astream
=
OneDNNContext
::
tls
().
get_stream
();
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
out
->
Resize
(
out_dims
);
out
->
set_mem_desc
(
reorder_dst_memory_p
->
get_desc
().
reshape
(
vectorize
(
out_dims
)));
}
template
<
typename
T
,
typename
Context
>
void
SqueezeKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
IntArray
&
axes
,
DenseTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
std
::
vector
<
int32_t
>
tmp
(
axes
.
GetData
().
begin
(),
axes
.
GetData
().
end
());
auto
out_dims
=
funcs
::
GetOutputSqueezeShape
(
tmp
,
x_dims
,
true
);
ExecuteSqueeze
<
T
,
Context
>
(
dev_ctx
,
x
,
x_dims
,
out_dims
,
out
);
}
template
<
typename
T
,
typename
Context
>
void
SqueezeWithXShapeKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
IntArray
&
axes
,
DenseTensor
*
out
,
DenseTensor
*
xshape
)
{
auto
x_dims
=
slice_ddim
(
xshape
->
dims
(),
1
,
xshape
->
dims
().
size
());
auto
out_dims
=
out
->
dims
();
ExecuteSqueeze
<
T
,
Context
>
(
dev_ctx
,
x
,
x_dims
,
out_dims
,
out
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
squeeze
,
OneDNN
,
ONEDNN
,
phi
::
SqueezeKernel
,
float
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
squeeze_with_xshape
,
OneDNN
,
ONEDNN
,
phi
::
SqueezeWithXShapeKernel
,
float
,
phi
::
dtype
::
bfloat16
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录