@@ -16,7 +16,7 @@ When training with synchronize SGD, PaddlePaddle uses an internal "synchronize b
...
@@ -16,7 +16,7 @@ When training with synchronize SGD, PaddlePaddle uses an internal "synchronize b
## Preparations
## Preparations
1. Prepare your computer cluster. It's normally a bunch of Linux servers connected by LAN. Each server will be assigned a unique IP address. The computers in the cluster can be called "nodes".
1. Prepare your computer cluster. It's normally a bunch of Linux servers connected by LAN. Each server will be assigned a unique IP address. The computers in the cluster can be called "nodes".
2. Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you'll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read [this build and install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install) document. We strongly recommend using [Docker installation](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
2. Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you'll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read [this build and install](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/index_cn.html) document. We strongly recommend using [Docker installation](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/docker_install_cn.html).
After installation, you can check the version by typing the below command (run a docker container if using docker: `docker run -it paddlepaddle/paddle:[tag] /bin/bash`):
After installation, you can check the version by typing the below command (run a docker container if using docker: `docker run -it paddlepaddle/paddle:[tag] /bin/bash`):
...
@@ -48,12 +48,12 @@ If you wish to run parameter servers in background, and save a log file, you can
...
@@ -48,12 +48,12 @@ If you wish to run parameter servers in background, and save a log file, you can
| port | required | 7164 | port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput |
- port: **required, default 7164**, port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput.
| ports_num | required | 1 | total number of ports will listen on |
- ports_num: **required, default 1**, total number of ports will listen on.
| ports_num_for_sparse | required | 1 | number of ports which serves sparse parameter update |
- ports_num_for_sparse: **required, default 1**, number of ports which serves sparse parameter update.
| num_gradient_servers | required | 1 | total number of gradient servers |
- num_gradient_servers: **required, default 1**, total number of gradient servers.
### Starting trainer
### Starting trainer
Type the command below to start the trainer(name the file whatever you want, like "train.py")
Type the command below to start the trainer(name the file whatever you want, like "train.py")
| use_gpu | optional | False | set to "True" to enable GPU training |
- use_gpu: **optional, default False**, set to "True" to enable GPU training.
| trainer_count | required | 1 | total count of trainers in the training job |
- trainer_count: **required, default 1**, total count of trainers in the training job.
| port | required | 7164 | port to connect to parameter server |
- port: **required, default 7164**, port to connect to parameter server.
| ports_num | required | 1 | number of ports for communication |
- ports_num: **required, default 1**, number of ports for communication.
| ports_num_for_sparse | required | 1 | number of ports for sparse type caculation |
- ports_num_for_sparse: **required, default 1**, number of ports for sparse type caculation.
| num_gradient_servers | required | 1 | total number of gradient server |
- num_gradient_servers: **required, default 1**, total number of gradient server.
| trainer_id | required | 0 | ID for every trainer, start from 0 |
- trainer_id: **required, default 0**, ID for every trainer, start from 0.
| pservers | required | 127.0.0.1 | list of IPs of parameter servers, separated by "," |
- pservers: **required, default 127.0.0.1**, list of IPs of parameter servers, separated by ",".
### Prepare Training Dataset
### Prepare Training Dataset
...
@@ -159,7 +159,7 @@ Your workspace may looks like:
...
@@ -159,7 +159,7 @@ Your workspace may looks like:
-`my_lib.py`: user defined libraries, like PIL libs. This is optional.
-`my_lib.py`: user defined libraries, like PIL libs. This is optional.
-`word_dict.pickle`: dict file for training word embeding.
-`word_dict.pickle`: dict file for training word embeding.
-`train.py`: training program. Sample code: [api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py). ***NOTE:*** You may need to modify the head part of `train.py` when using different cluster platform to retrive configuration environment variables:
-`train.py`: training program. Sample code: [api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py). ***NOTE:*** You may need to modify the head part of `train.py` when using different cluster platform to retrive configuration environment variables: